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Figure 5.19: FPSO at zero speed with wave encounter angle 90deg (beam waves). Assessment 
of dimension of measurement region on prediction error. Normalized standard deviation of 
the prediction error of wave elevation (left column) and of roll motion (right column) . 
Bretschneider spectrum with significant wave height 6.5sH m=  and peak period 17.60pT s= .
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Figure 5.20: Container ship advancing at 10knots with wave encounter angle 135deg (bow 
quartering waves). Assessment of effect of taking radar images at different distance from the 
ship. Normalized standard deviation of the prediction error of wave elevation (left column) 
and of pitch motion (right column). Bretschneider spectrum with significant wave height 
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inversion process. The result is a new methodology that could provide an important tool 
for the design of deterministic motion prediction procedures having at disposal a 
probabilistically consistent measure of the prediction error.  
 
The need to benchmark the developed linear methodologies with more realistic 
nonlinear wave fields has required the implementation of a High-Order Spectral (HOS) 
method. The developed HOS has been implemented on the basis of the state-of-the-art. 
In order to provide information which might be useful for further studies, some special 
care has been dedicated to the analysis and description of initialization and stability 
issues for the generation of nonlinear wave fields. 
 
This thesis is organized as follows. In chapter §2, the main aspects of the 
implementation of the HOS code are presented. The overall theory and the numerical 
implementation of the tool are reported. Some tests, considered as relevant for the 
verification of the software, are eventually carried out. Finally, some results about the 
generation of nonlinear wave fields are presented. 
 
In chapter §3, the developed LSQR inversion technique is presented. First, the 
linearized model of the wave radar is derived. Then, the LSQR inversion technique is 
described by reporting how the model has been set-up and by providing a detailed 
discussion about the implementation of the regularization technique. Examples of 
detailed characterizations of the reconstruction error are provided, by the LSQR 
inversion of synthetic radar images generated for both linear and nonlinear wave fields. 
 
In chapter §4, the LEPrE methodology is presented. The main assumptions about the 
definition, in a probabilistic framework, of the wave prediction problem are discussed. 
The LEPrE formulation for the calculation of the ensemble variance of the prediction 
error is derived. Eventually, some example applications are presented, considering 
linear long crested and short crested sea conditions. The inclusion in the model of the 
measurement error is also considered, by providing some example of assessment of the 
wave prediction error, accounting for simplified models of radar inversion error, both in 
case of linear long crested and short crested seas, as well as in case of nonlinear long 
crested sea conditions. 
 
In chapter §5, the LEPrE methodology is extended to the estimation of the motions 
prediction error. The way the linear motion transfer functions are included in the 
method is presented, as well as the formulation of the motion prediction error taking 
into account the wave measurement error. Some examples of motion prediction are 
reported considering two different ships: a FPSO considered as stationary (zero-speed) 
and a Containership advancing in the seaway. A discussion is provided on how the 
wave-structure interaction affects the prediction error of the ship motion. In addition, 
some technological and practical considerations, based on the developed LEPrE for 
motion are drawn through some example applications. 
 
Eventually, in chapter §6, some concluding remarks about the presented methods and 
some proposals for further investigations are provided. 











Sect. 5.5: Effect of measurement error 

175 

 

 
Figure 5.18: Container ship advancing at 10knots with wave encounter angle 135deg (bow quartering 
waves). Example deterministic prediction of time histories of wave elevation and motions. Bretschneider 
spectrum with significant wave height 2.5sH m=  and peak period 11.97pT s= . An additional 
measurement error affecting the wave elevation data is modelled as Gaussian noise with standard 
deviation 0.25 sHδs = .  
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5.6 Technological and procedural indications 
At the early stages of the definition of the prediction process, the LEPrE methodology, 
as extended to the assessment of the motion prediction error, can be used as a tool for 
the choice of the main parameters for the implemented deterministic sea wave and ship 
motion prediction procedure. The effects of widening the measurements region, 
considering radar images taken at different distance from the structure or changing the 
prediction model are oftentimes investigated only considering the prediction error of the 
wave elevation. In this respect, the extended LEPrE approach can be used to ground 
these considerations on more solid basis considering for example the motion prediction 
error accounting for a specific degree of freedom or for any linear combination in the 
framework of the linear seakeeping theory. To stress this argument, hereinafter, two 
simple examples are carried out.  
 
First, the effect of accounting for a larger region of space where to measure the wave 
elevation is presented in the case of the prediction error for the roll motion of the FPSO 
at zero speed in beam waves. In this case, the calculation has been carried out by 
measuring the wave elevation from the point 150minr m=  up to the length 

[1200,2400,4800]ML m= . The measurements have been taken for a single time instant 
or on a set of time instant in the past within an interval based on the peak period of the 
wave spectrum, i.e. 0t = , ,[ ]02 pTt∈ −  or ,[ ]04 pTt∈ − . The time discretization 
considered is 1.5dt s= . The wave prediction model is based on a discretized set of 
wave numbers [80,160,320]N =  on the basis of the considered measurement region 

defined as  with n=[1,..,N]2
n

M

nk
L
π

=  and with corresponding wave frequency 

calculated for the deep water condition n nkgω = . The fitting has been then carried 
out using least square approach eventually considering more than one time instant, for 
the relevant cases.  
 
Figure 5.19 presents the normalized standard deviation of the wave elevation prediction 
error, as well as that of roll motion. It can be noticed from the results in Figure 5.19 
that, by widening the measurement region, the roll prediction error attains lower values 
confirming that the prediction of roll motion would benefit from a finer resolution in the 
wave frequency of the prediction model. Moreover, this suggests how the choice of 
main parameter of the prediction model, as well as of the underlying measurement 
technology, can be based on the specification of target prediction accuracies regarding 
motions. 
 
In the second example, the Container ship advancing at 10knots in bow quartering 
waves is considered, and the minimum distance from the measurement region minr   
(which can be considered to correspond, for instance, to the wave radar blind region) is 
varied considering [150,300,600,1200]minr m= . The length of the measurement interval 
is kept constant to 2400ML m= . Such long range measurements are, herein, considered 
only because relevant to the discussion. However, although such figure is within typical 
wave radar maximum range, in the case of shipborne devices some detrimental effect in 
the inversion of the radar images can be expected. The analysis is carried out on the 
prediction error for wave elevation and, as an example, for ship motions, and results 
from the analysis are reported in Figure 5.20. 
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The observed increasing of the minimum of the prediction error as minr  increases, as 
well, as the change of the shape of the prediction error curve for the wave elevation, is a 
well-known result (Naaijen et al. [102]; Vettor [146]). It is however noted that the 
prediction error for the pitch motion seems to be less affected from the changing of the 
distance of the ship from the measurement region, apart from the increasing delay 
linked to the propagation of the wave elevation model. 
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Figure 5.19: FPSO at zero speed with wave encounter angle 90deg (beam waves). Assessment of 
dimension of measurement region on prediction error. Normalized standard deviation of the prediction 
error of wave elevation (left column) and of roll motion (right column) . Bretschneider spectrum with 
significant wave height 6.5sH m=  and peak period 17.60pT s= . 
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Figure 5.20: Container ship advancing at 10knots with wave encounter angle 135deg (bow quartering 
waves). Assessment of effect of taking radar images at different distance from the ship. Normalized 
standard deviation of the prediction error of wave elevation (left column) and of pitch motion (right 
column). Bretschneider spectrum with significant wave height 2.5sH m=  and peak period. 
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5.7 Concluding remarks 
In this chapter, the LEPrE approach, originally developed for the estimation of 
prediction error in case of wave elevation, has been extended to the case of linear ship 
motions. In fact, the linearity assumption of the LEPrE methodology naturally allows 
extending this technique to take into account any linear transformation on the prediction 
model coefficients. As a result, in the case of linear ship motion, it was sufficient to 
consistently take into account the transfer functions of the motions in order to arrive at a 
direct semi-analytical assessment of the motions prediction error. Moreover, in the 
framework of linear theory, this method can be extend to account for any linear 
response which might arise from the wave field, from a combination/transformation of 
ship motions, or by a combination of ship motions and wave field. In the framework of 
the linear seakeeping theory, the approach could account for quantities like the relative 
motion with respect to the sea surface, keel emergence, accelerations at given point, 
linear forces, etc.  
 
The LEPrE approach has proven to be capable in dealing also with the possible presence 
of wave measurement error, accounting for it also in the assessment of the motion 
prediction error. Furthermore, the LEPrE approach could be proposed as tool for a 
“motion oriented” setup of a linear deterministic sea wave and ship motion prediction 
procedures. In fact, presently, the wave elevation prediction error is considered as the 
reference quantity to judge on the feasibility of a deterministic prediction procedure. In 
the reported examples, however, it has been highlighted that the motion prediction 
performance can depart form the wave prediction performance. As a result, considering 
only the latter aspect of the prediction problem can be limiting and/or could lead to 
erroneous choices. It is also worth mentioning that the proposed approach can also be 
used to assess the influence of the wave measurement capabilities, providing potential 
indications for the most effective direction towards which developing the measurement 
technology. 
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6 CONCLUSIONS 

In this thesis the main aspects of the deterministic prediction of ship motions has been 
studied. Starting from the observation of existing limitations in, and gaps between, 
different steps of an envisioned deterministic sea wave and ship motion prediction 
chain, the focus of the research has been put on development and investigation of new 
approaches, with the intention of contributing to the improvement of the existing state-
of-the-art. To this end, the whole forecasting chain, starting from the analysis of wave 
radar inversion techniques and ending with the assessment of ship motions prediction 
error, has been analysed, trying to include, in the developed methodology, a way to 
consistently account for the unavoidable uncertainties coming from the measurement 
devices and eventually propagated by the prediction models.  
 
This work has mainly dealt with linear deterministic forecasting procedures, although, 
in chapter §2, some aspects of nonlinear wave modelling and propagation have been 
studied. Indeed, a High-Order Spectral (HOS) method has been implemented as a 
flexible tool for the generation of nonlinear wave fields, which can represent a more 
“realistic” representation of the actual sea compared to linear models, particularly for 
severe sea states. The main aspects of its implementation have been presented with 
particular attention to initialization and stability issues. The HOS method has been 
conceived in the present work as a benchmarking tool for the testing of the other, 
mainly linear, developed methodologies. In chapter §3 a novel approach for the 
inversion of the wave radar images, the Least SQuares with Regularization (LSQR) 
technique, has been presented. The method shares some commonalities with already 
existing techniques, but its definition has allowed in dealing, innovatively, with some 
often overlooked problems in wave radar imaging inversion, as the shadowing effect. 
The error introduced by the LSQR inversion of synthetically generated radar images has 
been investigated and some proposal for the characterization of the main statistical 
features of the measurement error has been suggested, with reference to a possible 
application to deterministic sea waves and ship motions predictions techniques. In 
chapter §4 a new technique for the semi-analytical estimation of prediction error 
statistical characteristics, the Linear Estimator of the Prediction Error (LEPrE), has been 
introduced. This technique stems from the combination of predictions based on linear 
fitting procedures and the framework of Gaussian stochastic processes for the 
representation of the underlying wave field. The LEPrE approaches the deterministic 
sea wave prediction problem by embedding, in a simple methodology, the main features 
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