Study of Jet Quenching with $Z +$ jet Correlations in Pb-Pb and pp Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 3 February 2017; revised manuscript received 3 July 2017; published 23 August 2017)

The production of jets in association with Z bosons, reconstructed via the $\mu^+\mu^-$ and e^+e^- decay channels, is studied in pp and, for the first time, in Pb-Pb collisions. Both data samples were collected by the CMS experiment at the LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The Pb-Pb collisions were analyzed in the 0%-30% centrality range. The back-to-back azimuthal alignment was studied in both pp and Pb-Pb collisions for Z bosons with transverse momentum $p_T^Z > 60$ GeV/c and a recoiling jet with $p_T^{\text{jet}} > 30$ GeV/c. The p_T imbalance $x_{jZ} = p_T^{\text{jet}} / p_T^Z$, as well as the average number of jet partners per Z, R_{jZ}, was studied in intervals of p_T^Z. The R_{jZ} is found to be smaller in Pb-Pb than in pp collisions, which suggests that in Pb-Pb collisions a larger fraction of partons associated with the Z bosons fall below the 30 GeV/c p_T^{jet} threshold because they lose energy.

DOI: 10.1103/PhysRevLett.119.082301

The correlated production of vector bosons and jets in hard parton scatterings occurring in ultrarelativistic heavy ion collisions provides an ideal probe of the quark-gluon plasma (QGP), a deconfined state of quarks and gluons [1,2]. Final-state jets are created by the fragmentation of outgoing partons that interact strongly with the produced medium and lose energy [3–11], a phenomenon ("jet quenching") observed at RHIC [12,13] and the LHC [14–18]. The transverse momentum (p_T) of the jet is highly correlated (through momentum conservation) with that of the associated Z boson, which is not affected by the medium [19–21] and reflects the initial energy of the parton. The lost energy can be related, via theoretical models, to the thermodynamical and transport properties of the medium [9–11,22–24]. At LHC energies, $Z +$ jet production is dominated by quark jets for $p_T^{\text{jet}} \simeq 30$ GeV/c [21], the primary subprocess being $q(\bar{q}) + g \rightarrow Z + q(\bar{q})$ [19], hence providing information on the parton flavor (quark or gluon) and kinematics, and allowing detailed studies of the energy loss with a well-defined production process. The Z-jet correlations are particularly well suited to perform tomographic studies of the QGP, given the minimal contributions from background channels [20,25–27]. Correlations of jets with isolated photons are accessible at higher rates and carry similar information on parton energy loss [25–29] but suffer from an irreducible background of photons from jet fragmentation [17,30] as well as larger uncertainties arising from the experimental selection of photon candidates.

This Letter describes the identification of $Z +$ jet pairs in pp and Pb-Pb collisions, and the first characterization of parton energy loss through angular and p_T correlations between the jet and the Z, reconstructed in dimuon or dielectron decays. The back-to-back azimuthal alignment of the Z and jets is studied through the difference $\Delta \phi_{jZ} = |\phi_{\text{jet}} - \phi_{Z}|$. The $Z +$ jet momentum imbalance is studied using the $x_{jZ} = p_T^{\text{jet}} / p_T^Z$ ratio and the p_T^{jet} dependence of its mean value, $\langle x_{jZ} \rangle$. The average number of jet partners per Z boson, R_{jZ}, is also reported. The analysis exploits Pb-Pb and pp data samples collected by CMS at a nucleon-nucleon center-of-mass energy of 5.02 TeV, corresponding to integrated luminosities of 404 μb$^{-1}$ and 27.4 pb$^{-1}$, respectively.

The central feature of CMS is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end cap sections. Forward hadron calorimeters extend the pseudorapidity (η) coverage and are used for Pb-Pb event selection. Muons are measured in gas-ionization detectors located outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [31].

The event samples are selected on-line with dedicated lepton triggers and cleaned off-line to remove noncollision events, such as beam-gas interactions or cosmic-ray muons [32]. In addition, events are required to have at least one reconstructed primary interaction vertex. The $Z \rightarrow e^+e^-$

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

0031-9007/17/119(8)/082301(18) 082301-1 © 2017 CERN, for the CMS Collaboration
events are triggered if two ECAL clusters [33] have transverse energy greater than 15 GeV and $|\eta| < 2.5$, while the $Z \to \mu^+\mu^-$ triggers require one muon of $p_T > 15$ GeV/c or two muons of $p_T > 10$ GeV/c.

For the analysis of Pb-Pb collisions, the “centrality” (overlap of the two colliding nuclei) is determined by the sum of the total energy deposited in both forward hadron calorimeters [15]. The results refer to the 30% most central collisions, to focus on the region of highest physics interest. After all the other analysis selections, 78% of the Z boson events fall in this centrality range.

The PYTHIA 8.212 [34] Monte Carlo (MC) event generator, with tune CUETSM1 [35], is used to simulate $Z +$ jet signal events, with $p_T^Z > 30$ GeV/c and rapidity $|y^Z| < 2.5$. A sample with a Z boson without any kinematic selection was produced using a next-to-leading order (NLO) generator, MADGRAPH5_AMC@NLO[36]. In the Pb-Pb case, a PYTHIA+HYDJET sample is created by embedding PYTHIA signal events in heavy ion events generated with HYDJET 1.9 [37] and tune HydroQJets. The generated events are propagated through the CMS apparatus using the GEANT4 [38] package. No unfolding is performed for the results presented. The recipe for applying a smearing of the jet p_T resolution is provided in Supplemental Material [39].

Electrons are identified as ECAL superclusters [40] matched in position and energy to tracks reconstructed in the tracker. They must have $p_T > 20$ GeV/c, above the trigger threshold, and each supercluster must be within the acceptance of the tracker, $|\eta| < 2.5$. Electron candidates in the transition region between the barrel and end cap subdetectors ($1.44 < |\eta| < 1.57$) are excluded. In pp collisions, the electrons are selected via standard identification criteria [40]. A narrow transverse shape of showers in the ECAL and a low HCAL over ECAL energy ratio are required to reject misidentified electrons. Additional tracking information is used to distinguish electrons from charged hadrons [40]. For Pb-Pb collisions, the identification criteria have been optimized to compensate for the higher background levels in the calorimeters. With these selections, the pp and Pb-Pb electron reconstruction purities (efficiencies) are identical within 1% (10%).

Muons are selected by requiring segments in at least two muon detector planes and a good-quality fit when connecting them to tracker segments. This suppresses hadronic punchthrough and muons from in-flight decays of hadrons. A minimum number of hits in the pixel and strip layers is required, and the reconstructed muon tracks must point to the primary vertex in the transverse and longitudinal directions [41]. The same selections are applied for both pp and Pb-Pb data. In order to suppress the background continuum under the Z peak, mostly originating from uncorrelated simultaneous decays of heavy flavor mesons, the muons are required to have $p_T > 10$ GeV/c. In addition, the muon tracks must fall in the acceptance of the muon detectors, $|\eta^\mu| < 2.4$.

Jet reconstruction uses the anti-k_T algorithm implemented in FASTJET [42], following the procedure of Ref. [16]. A small distance parameter, $R = 0.3$, minimizes the effects of fluctuations in the underlying event (UE), dominantly formed by soft processes in heavy ion collisions. The UE energy subtraction [43] is performed for Pb-Pb as described in Refs. [15–17]. Closure tests, done on MC samples without medium-induced jet energy loss, show no over subtraction of the UE in the Pb-Pb sample. No subtraction is applied in the pp sample, where the UE contribution is negligible. The jet energy is calibrated applying p_T^jet- and p_T^jet-dependent correction factors derived with the PYTHIA signal sample [44]. Then, dijet and photon + jet balance techniques [45] are used to correct for the residual detector response differences between measured and simulated samples. In addition, a centrality-dependent correction obtained from simulation studies is applied to remove the residual effects from the UE in Pb-Pb collisions. The UE from Pb-Pb data and MC samples are compared using the p_T density [44,46,47], defined as the median of the ratio of the jet transverse momentum to the jet area, for all jets in the event. Given the coarse centrality range used in the analysis, the difference between the measured and simulated Pb-Pb events has a negligible effect on jet reconstruction.

Except in Fig. 4, the resolutions of the measured jet energy and azimuthal angle in the pp samples are smeared to match those of the Pb-Pb sample. The jet energy resolution can be quantified using the Gaussian standard deviation σ of the $p_T^{\text{gen}}/p_T^{\text{reco}}$ ratio, where p_T^{reco} is the UE-subtracted, detector-level jet p_T and p_T^{gen} is the generator-level jet p_T without any contributions from the UE in Pb-Pb. It is determined using PYTHIA+HYDJET (for Pb-Pb) and PYTHIA (for pp) samples and parametrized as a function of p_T^{gen} using the expression $\sigma(p_T^{\text{gen}}) = C \oplus (S/\sqrt{p_T^{\text{gen}}}) \oplus (N/p_T^{\text{gen}})$, where \oplus stands for the sum in quadrature and the parameters C, S, and N are determined from simulation studies. The same parametrization is used to determine the jet azimuthal angle resolution, quantified by the Gaussian standard deviation σ_ϕ of the $|\phi^{\text{reco}} - \phi^{\text{gen}}|$ difference.

The Z candidates are defined as opposite-charge electron or muon pairs, with a reconstructed invariant mass ($M^{\ell\ell}$) in the interval 70–110 GeV/c^2 and $p_T > 40$ GeV/c. The invariant mass distributions of all the dileptons used in the Pb-Pb analysis are shown in Fig. 1. Each Z candidate is paired with all jets in the same event that pass the $p_T > 30$ GeV/c and $|\eta^\ell| < 1.6$ selection. Simulation studies show that the jet selection efficiency and the energy resolution are well understood for this kinematic range. Additional energy corrections are applied to the jet p_T, to account for residual performance degradations observed in simulation studies. Jets reconstructed within $\Delta R < 0.4$ from a lepton are rejected, to eliminate jet energy contamination by leptons from Z decays.
A systematic uncertainty is evaluated by shifting the interactions not related to the primary multiplicity heavy ion UE or from additional initial hard contribution from jets not produced in the same parton-

The background jet contributions are estimated constructed in subsets of 40 minimum bias events. All events from the raw jet spectrum, eliminating coincidental pairs and ensuring that the final correlations of the deviations between electron p_T and h_T are sizable (negligible) in the dielectron channel. Comparing the measured and simulated reconstruction are sizable (negligible) in the dielectron reconstruction.

For the analysis of Pb-Pb collisions, the background contribution from jets not produced in the same parton-parton interaction as the Z boson needs to be considered. This contribution arises from misidentified jets reconstructed from regional energy fluctuations in the high-multiplicity heavy ion UE or from additional initial hard interactions not related to the primary $Z +$ jet production. The background jet contributions are estimated constructing a mixed-event jet background by correlating the Z boson from each candidate $Z +$ jet event with jets reconstructed in subsets of 40 minimum bias events. All events must pass the off-line event selection and have the same centrality and interaction vertex as the $Z +$ jet candidate event. The resulting background jet spectrum is subtracted from the raw jet spectrum, eliminating coincidental $Z +$ jet pairs and ensuring that the final $Z +$ jet observables reflect the correlations of Z bosons and associated jets.

The systematic uncertainties related to Z boson reconstruction are sizable (negligible) in the dielectron (dimuon) channel. Comparing the measured and simulated dielectron invariant mass peaks shows that the average deviation between electron p_T^{rec} and p_T^{gen} is 0.5%. A systematic uncertainty is evaluated by shifting the electron p_T by $\pm 0.5\%$, resulting in changes of $\langle x_{jZ} \rangle$ and R_{jZ} for Pb-Pb (pp) by 0.5% (0.3%) and 3% (0.8%), respectively. The simulated Z dielectrons reconstructed in central Pb-Pb collisions have a p_T resolution of 5% for $p_T^Z > 40$ GeV/c. In Pb-Pb simulated events, p_T^Z is smeared by 5%, resulting in variations of $\langle x_{jZ} \rangle$ and R_{jZ} by 1.5% and 0.8%, respectively. When combining the two lepton results, a weighting is applied to the electron sample, to compensate for the different centrality dependencies of the Z boson reconstruction in the electron and muon channels. The difference between the corrected and uncorrected $\langle x_{jZ} \rangle$ and R_{jZ} values, 0.3% and 5.8%, respectively, is taken as systematic uncertainty.

Simulation studies show that the jet energy scale $\langle p_T^{\text{rec}} / p_T^{\text{gen}} \rangle$ can deviate from unity by up to 2%. Additional deviations can arise from differences between the fragmentation pattern of jets in measured and simulated events. To evaluate the corresponding systematic uncertainty, the jet energy scale is shifted for Pb-Pb (pp) upward by 6% (2%) and downward by 4% (2%). The higher upward variation reflects the relatively high energy scale of quark jets, which contribute more to the $Z +$ jet events than the gluon jets. The relative change in $\langle x_{jZ} \rangle$ and R_{jZ} for Pb-Pb (pp) is 5.4% (2.4%) and 4.6% (2.4%), respectively. Finally, differences between the measured and simulated samples suggest that the jet energy resolution is up to 15% worse in the data. The related systematic uncertainty is evaluated smearing p_T^{jet} by 15% in the Pb-Pb MC calculations. The pp data are smeared to simulate the poor resolution due to the UE fluctuations in Pb-Pb data. The smearing is performed with the relative resolution $\sigma_{\text{rel}} = \sqrt{\sigma_{\text{rel}}^2 - \sigma_{pp}^2}$, where σ_{rel} and σ_{pp} correspond to the parameterizations described above. A systematic uncertainty is assigned by varying the relative resolution by $\pm 15\%$. The Pb-Pb (pp) relative change in $\langle x_{jZ} \rangle$ and R_{jZ} due to jet energy resolution is 2.5% and 3.7% (0.5% and 0.7%), respectively. The jet angular resolution correction implies an additional uncertainty on the pp sample, of 0.1% for $\langle x_{jZ} \rangle$ and 0.2% for R_{jZ}.

The total systematic uncertainties for Pb-Pb (pp) amount to 6.2% (2.5%) and 8.9% (2.6%) for the $\langle x_{jZ} \rangle$ and R_{jZ} results, respectively, of which 5.7% and 8.0% are uncorrelated between the pp and Pb-Pb results; the uncorrelated uncertainties do not reflect possible differences between p_T^{rec} and p_T^{gen}.

Figure 2, top, shows the $\Delta \phi_{jZ}$ distribution of $Z +$ jet pairs that pass all the selections; only $Z +$ jet pairs with $p_T^Z > 60$ GeV/c were included to reduce the fraction of events where energy loss effects cause the jet partner to fall below the $p_T^{\text{jet}} > 30$ GeV/c threshold. There are 678 and 232 events that pass the $p_T^Z > 60$ GeV/c selection in pp and in the 30% most central Pb-Pb collisions, respectively. To study if the angular distribution of jets with respect to
Z Pb-Pb events, respectively. Figure 2, bottom, shows the 0.40, even if systematic uncertainties are excluded. distribution and an overall decrease in the number of distributions for Pb-Pb and

cant difference is seen between the distributions; the probability to obtain a KS value larger than that observed in the data, the distributions are studied using their means,

The relative shift between the and Pb-Pb distributions is studied using their means, , shown in Fig. 3, top, as a function of . The minimum of the partner jet imposes a lower limit on the value of . As increases relative to the cutoff, the kinematic phase space for lower opens up, resulting in a shift towards lower for higher . For all ranges, is found to be lower in Pb-Pb collisions than in collisions, as expected from energy loss models of partons traversing the medium. Also is expected to increase as a function of , as the 30 GeV/c threshold restricts the phase space of jets counted for a given selection. Figure 3, bottom, shows the dependence of on . The values are significantly different.

The systematic uncertainties and their correlations were included in these calculations. The combined value is 0.0064 when including Z + jet pairs with > 40 GeV/c, indicating that the two distributions are significantly different.

For the and results, shown in Figs. 2 and 3, only events with > 7π/8 are used, to select mostly back-to-back + jet pairs; it keeps 63% and 73% of the and Pb-Pb events, respectively. Figure 2, bottom, shows the distributions for Pb-Pb and collisions. Jet energy loss is expected to manifest itself both as a shift in the distribution and an overall decrease in the number of + jet pairs as jets fall below the threshold. Therefore, the KS test was applied to the distribution, and a separate overall normalization test was applied to the total number of + jet pairs per leading to values of = 0.07 and = 0.01, respectively. The systematic uncertainties are included in these calculations. The combined value is 1−[ln(1/p)] = 0.0064 when including Z + jet pairs with > 40 GeV/c, indicating that the two distributions are significantly different.

FIG. 2. Distributions of the azimuthal angle difference between the Z boson and the jet (top) and of the transverse momentum ratio between the jet and the Z boson with > 7π/8 (bottom). The distributions are normalized by the number of Z events, . Vertical lines (bands) indicate statistical uncertainties.

FIG. 3. The mean value of the distribution (top) and the average number of jet partners per Z boson (bottom), as a function of . Vertical lines (bands) indicate statistical (systematic) uncertainties.
found to be smaller in Pb-Pb than in pp. As their difference is approximately constant as a function of p_T^Z, a relatively smaller fraction of jets is lost in Pb-Pb collisions for larger initial (before traversing the medium) parton energies.

Figure 4 compares the x_{jZ} results to several theoretical calculations, using the same kinematic selections as the data. The Pb-Pb results are compared to three models that incorporate the phenomenon of jet quenching: Jet Evolution With Energy Loss (JEWEL) [26], Hybrid [25], and GLV [27]. The JEWEL error bars represent statistical uncertainties, while the widths of the hybrid bands represent systematic variations. A MadGraph5_AMC@NLO calculation [36] is also shown.

In summary, correlations of $p_T^Z > 40$ GeV/c Z bosons with $p_T^{pZ} > 30$ GeV/c jets have been studied in pp and, for the first time, in Pb-Pb collisions. The data were collected with the CMS experiment during the 2015 data-taking period, at $\sqrt{s_{NN}} = 5.02$ TeV. No significant difference was found between the distributions of the azimuthal angle difference of the Z and the jet in pp and Pb-Pb collisions. The x_{jZ} distributions indicate that the Pb-Pb values tend to be lower than those measured in pp collisions. Correspondingly, the average value of the transverse momentum ratio (x_{jZ}) is smaller in Pb-Pb than in pp collisions, for all p_T^Z intervals. The average number of jet partners per Z, R_{jZ}, is lower in Pb-Pb than in pp collisions, for all p_T^Z intervals, which suggests that in Pb-Pb collisions a larger fraction of partons associated with Z bosons lose energy and fall below the 30 GeV/c p_T^{jet} threshold. These measurements provide new input for the determination of jet quenching parameters using a selection of partons with well-defined flavor and initial kinematics.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES,

71a INFN Sezione di Pavia, Pavia, Italy
71b Università di Pavia, Pavia, Italy
72a INFN Sezione di Perugia, Perugia, Italy
72b Università di Perugia, Perugia, Italy
73a INFN Sezione di Pisa, Pisa, Italy
73b Università di Pisa, Pisa, Italy
73c Scuola Normale Superiore di Pisa, Pisa, Italy
74a INFN Sezione di Roma
74b Università di Roma
75a INFN Sezione di Torino, Novara, Italy
75b Università di Torino, Novara, Italy
75c Università del Piemonte Orientale, Novara, Italy
76a INFN Sezione di Trieste, Trieste, Italy
76b Università di Trieste, Trieste, Italy
77 Kyungpook National University, Daegu, Korea
78 Chonbuk National University, Jeonju, Korea
79 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
80 Hanyang University, Seoul, Korea
81 Korea University, Seoul, Korea
82 Seoul National University, Seoul, Korea
83 University of Seoul, Seoul, Korea
84 Sungkyunkwan University, Suwon, Korea
85 Vilnius University, Vilnius, Lithuania
86 National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
87 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
88 Universidad Iberoamericana, Mexico City, Mexico
89 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
90 Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
91 University of Auckland, Auckland, New Zealand
92 University of Canterbury, Christchurch, New Zealand
93 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
94 National Centre for Nuclear Research, Swierk, Poland
95 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
96 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
97 Joint Institute for Nuclear Research, Dubna, Russia
98 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
99 Institute for Nuclear Research, Moscow, Russia
100 Institute for Theoretical and Experimental Physics, Moscow, Russia
101 Moscow Institute of Physics and Technology, Moscow, Russia
102 National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
103 P.N. Lebedev Physical Institute, Moscow, Russia
104 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
105 Novosibirsk State University (NSU), Novosibirsk, Russia
106 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
107 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
108 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
109 Universidad Autónoma de Madrid, Madrid, Spain
110 Universidad de Oviedo, Oviedo, Spain
111 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
112 CERN, European Organization for Nuclear Research, Geneva, Switzerland
113 Paul Scherrer Institut, Villigen, Switzerland
114 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
115 Universität Zürich, Zurich, Switzerland
116 National Central University, Chung-Li, Taiwan
117 National Taiwan University (NTU), Taipei, Taiwan
118 Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
119 Physics Department, Science and Art Faculty, Çukurova University, Adana, Turkey
120 Middle East Technical University, Physics Department, Ankara, Turkey
121 Bogazici University, Istanbul, Turkey
122 Istanbul Technical University, Istanbul, Turkey
Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, Texas, USA

Catholic University of America, Washington, DC, USA

The University of Alabama, Tuscaloosa, Alabama, USA

Boston University, Boston, Massachusetts, USA

Brown University, Providence, Rhode Island, USA

University of California, Davis, Davis, California, USA

University of California, Los Angeles, California, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA

California Institute of Technology, Pasadena, California, USA

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

University of Colorado Boulder, Boulder, Colorado, USA

Cornell University, Ithaca, New York, USA

Fairfield University, Fairfield, Connecticut, USA

Fermi National Accelerator Laboratory, Batavia, Illinois, USA

University of Florida, Gainesville, Florida, USA

Florida International University, Miami, Florida, USA

Florida State University, Tallahassee, Florida, USA

Florida Institute of Technology, Melbourne, Florida, USA

University of Illinois at Chicago (UIC), Chicago, Illinois, USA

The University of Iowa, Iowa City, Iowa, USA

Johns Hopkins University, Baltimore, Maryland, USA

The University of Kansas, Lawrence, Kansas, USA

Kansas State University, Manhattan, Kansas, USA

Lawrence Livermore National Laboratory, Livermore, California, USA

University of Maryland, College Park, Maryland, USA

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

University of Minnesota, Minneapolis, Minnesota, USA

University of Mississippi, Oxford, Mississippi, USA

University of Nebraska-Lincoln, Lincoln, Nebraska, USA

State University of New York at Buffalo, Buffalo, New York, USA

Northeastern University, Boston, Massachusetts, USA

Northwestern University, Evanston, Illinois, USA

University of Notre Dame, Notre Dame, Indiana, USA

The Ohio State University, Columbus, Ohio, USA

Princeton University, Princeton, New Jersey, USA

University of Puerto Rico, Mayaguez, Puerto Rico, USA

Purdue University, West Lafayette, Indiana, USA

Purdue University Calumet, Hammond, Indiana, USA

Rice University, Houston, Texas, USA

University of Rochester, Rochester, New York, USA

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA

University of Tennessee, Knoxville, Tennessee, USA

Texas A&M University, College Station, Texas, USA

Texas Tech University, Lubbock, Texas, USA

Vanderbilt University, Nashville, Tennessee, USA

University of Virginia, Charlottesville, Virginia, USA

Wayne State University, Detroit, Michigan, USA

University of Wisconsin—Madison, Madison, Wisconsin, USA

\(^a\)Deceased.

\(^b\)Also at Vienna University of Technology, Vienna, Austria.
<table>
<thead>
<tr>
<th>Institution/University/Institute</th>
<th>City/Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.</td>
<td>Beijing, China.</td>
</tr>
<tr>
<td>Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3.</td>
<td>Strasbourg, France.</td>
</tr>
<tr>
<td>Also at Universidade Estadual de Campinas, Campinas, Brazil.</td>
<td>Campinas, Brazil.</td>
</tr>
<tr>
<td>Also at Universidade Federal de Pelotas, Pelotas, Brazil.</td>
<td>Pelotas, Brazil.</td>
</tr>
<tr>
<td>Also at Université Libre de Bruxelles, Bruxelles, Belgium.</td>
<td>Brussels, Belgium.</td>
</tr>
<tr>
<td>Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.</td>
<td>Hamburg, Germany.</td>
</tr>
<tr>
<td>Also at Joint Institute for Nuclear Research, Dubna, Russia.</td>
<td>Dubna, Russia.</td>
</tr>
<tr>
<td>Also at Suez University, Suez, Egypt.</td>
<td>Suez, Egypt.</td>
</tr>
<tr>
<td>Also at Ain Shams University, Cairo, Egypt.</td>
<td>Cairo, Egypt.</td>
</tr>
<tr>
<td>Also at Helwan University, Cairo, Egypt.</td>
<td>Cairo, Egypt.</td>
</tr>
<tr>
<td>Also at Université de Haute Alsace, Mulhouse, France.</td>
<td>Mulhouse, France.</td>
</tr>
<tr>
<td>Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.</td>
<td>Moscow, Russia.</td>
</tr>
<tr>
<td>Also at Tbilisi State University, Tbilisi, Georgia.</td>
<td>Tbilisi, Georgia.</td>
</tr>
<tr>
<td>Also at Ilia State University, Tbilisi, Georgia.</td>
<td>Tbilisi, Georgia.</td>
</tr>
<tr>
<td>Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.</td>
<td>Geneva, Switzerland.</td>
</tr>
<tr>
<td>Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.</td>
<td>Aachen, Germany.</td>
</tr>
<tr>
<td>Also at University of Hamburg, Hamburg, Germany.</td>
<td>Hamburg, Germany.</td>
</tr>
<tr>
<td>Also at Brandenburg University of Technology, Cottbus, Germany.</td>
<td>Cottbus, Germany.</td>
</tr>
<tr>
<td>Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.</td>
<td>Debrecen, Hungary.</td>
</tr>
<tr>
<td>Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.</td>
<td>Budapest, Hungary.</td>
</tr>
<tr>
<td>Also at Indian Institute of Science Education and Research, Bhopal, India.</td>
<td>Bhopal, India.</td>
</tr>
<tr>
<td>Also at Institute of Physics, University of Debrecen.</td>
<td>Debrecen, Hungary.</td>
</tr>
<tr>
<td>Also at University of Ruhuna, Matara, Sri Lanka.</td>
<td>Matara, Sri Lanka.</td>
</tr>
<tr>
<td>Also at Yazd University, Yazd, Iran.</td>
<td>Yazd, Iran.</td>
</tr>
<tr>
<td>Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.</td>
<td>Tehran, Iran.</td>
</tr>
<tr>
<td>Also at Università degli Studi di Siena, Siena, Italy.</td>
<td>Siena, Italy.</td>
</tr>
<tr>
<td>Also at Purdue University, West Lafayette, USA.</td>
<td>West Lafayette, USA.</td>
</tr>
<tr>
<td>Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.</td>
<td>Kuala Lumpur, Malaysia.</td>
</tr>
<tr>
<td>Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.</td>
<td>Kajang, Malaysia.</td>
</tr>
<tr>
<td>Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.</td>
<td>Mexico City, Mexico.</td>
</tr>
<tr>
<td>Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.</td>
<td>Warsaw, Poland.</td>
</tr>
<tr>
<td>Also at Institute for Nuclear Research, Moscow, Russia.</td>
<td>Moscow, Russia.</td>
</tr>
<tr>
<td>Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.</td>
<td>Moscow, Russia.</td>
</tr>
<tr>
<td>Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.</td>
<td>St. Petersburg, Russia.</td>
</tr>
<tr>
<td>Also at University of Florida, Gainesville, USA.</td>
<td>Gainesville, USA.</td>
</tr>
<tr>
<td>Also at P.N. Lebedev Physical Institute, Moscow, Russia.</td>
<td>Moscow, Russia.</td>
</tr>
<tr>
<td>Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.</td>
<td>Novosibirsk, Russia.</td>
</tr>
<tr>
<td>Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.</td>
<td>Belgrade, Serbia.</td>
</tr>
<tr>
<td>Also at INFN Sezione di Roma, Università di Roma, Roma, Italy.</td>
<td>Rome, Italy.</td>
</tr>
<tr>
<td>Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.</td>
<td>Belgrade, Serbia.</td>
</tr>
<tr>
<td>Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.</td>
<td>Pisa, Italy.</td>
</tr>
<tr>
<td>Also at National and Kapodistrian University of Athens, Athens, Greece.</td>
<td>Athens, Greece.</td>
</tr>
<tr>
<td>Also at Riga Technical University, Riga, Latvia.</td>
<td>Riga, Latvia.</td>
</tr>
<tr>
<td>Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.</td>
<td>Moscow, Russia.</td>
</tr>
<tr>
<td>Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.</td>
<td>Bern, Switzerland.</td>
</tr>
<tr>
<td>Also at Istanbul Aydin University, Istanbul, Turkey.</td>
<td>Istanbul, Turkey.</td>
</tr>
<tr>
<td>Also at Mersin University, Mersin, Turkey.</td>
<td>Mersin, Turkey.</td>
</tr>
<tr>
<td>Also at Kag University, Mersin, Turkey.</td>
<td>Mersin, Turkey.</td>
</tr>
<tr>
<td>Also at Piri Reis University, Istanbul, Turkey.</td>
<td>Istanbul, Turkey.</td>
</tr>
<tr>
<td>Also at Gaziosmanpasa University, Tokat, Turkey.</td>
<td>Tokat, Turkey.</td>
</tr>
<tr>
<td>Also at Adiyaman University, Adiyaman, Turkey.</td>
<td>Adiyaman, Turkey.</td>
</tr>
<tr>
<td>Also at Ozyegin University, Istanbul, Turkey.</td>
<td>Istanbul, Turkey.</td>
</tr>
<tr>
<td>Also at Izmir Institute of Technology, Izmir, Turkey.</td>
<td>Izmir, Turkey.</td>
</tr>
<tr>
<td>Also at Marmara University, Istanbul, Turkey.</td>
<td>Istanbul, Turkey.</td>
</tr>
<tr>
<td>Also at Kafkas University, Kars, Turkey.</td>
<td>Kars, Turkey.</td>
</tr>
<tr>
<td>Also at Istanbul Bilgi University, Istanbul, Turkey.</td>
<td>Istanbul, Turkey.</td>
</tr>
</tbody>
</table>
Also at Yildiz Technical University, Istanbul, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at Instituto de Astrofísica de Canarias, La Laguna, Spain.
Also at Utah Valley University, Orem, USA.
Also at Argonne National Laboratory, Argonne, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.