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1 Introduction

F-theory [1–3] is the most suitable setup to describe type IIB backgrounds with 7-branes.

These objects backreact on the closed string background by making the type IIB (complex-

ified) string coupling τ (also called the axio-dilaton) vary over spacetime. The underlying

idea of F-theory is to identify τ with the complex structure of an auxiliary two-torus. When

τ depends on the coordinates of the type IIB internal manifold B3, the corresponding su-

persymmetric background in F-theory will be an elliptic fibration Y4 over the base space

B3 (if the fibration admits a section, otherwise it will just be a genus-one fibration [4, 5]).
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The power of F-theory resides not only in its unifying language, able to capture the

backreaction of the 7-branes and to explore regions of the moduli space where the string

coupling is of order one, but also in model building. In fact, an SU(5) GUT model can

be constructed with order one top Yukawa coupling [6–9], generated at a codimension-

three locus in the base of the elliptic fibration where the SU(5) singularity enhances to

E6. This is a great advantage with respect to perturbative type IIB compactifications on

smooth Calabi-Yau (CY) threefolds, where the coupling is forbidden perturbatively. This

fact boosted numerous efforts to pursue SU(5) GUT model building in F-theory. As a

result nowadays we have global examples [10–24] exhibiting three generations of matter

and realistic Yukawa textures.

In spite of all these positive features of F-theory, it is in general important to be able

to connect the F-theory description to the type IIB one. In fact, perturbative type IIB

string theory techniques are very powerful and allow to address questions that in F-theory

are not still completely understood (e.g. the low energy effective couplings and moduli

stabilization). Having a range of parameters where both descriptions are available is es-

sential to approach problems that are understood on one side but not on the other. This

is possible when the string coupling is small almost everywhere in the ten-dimensional

space-time. The axio-dilaton τ depends on the complex structure moduli of the F-theory

fourfold Y4. To reach a weak coupling regime therefore, one needs to take a proper limit in

the complex structure moduli space. This limit is called the weak coupling limit, discussed

first by Sen [25] and recently refined in [26]. In this limit, all the 7-branes are D7-branes

or orientifold O7-planes and the CY threefold compactification manifold is easily defined,

allowing a direct match with the perturbative type IIB configuration.

In the last ten years, several globally consistent semi-realistic F-theory models were

constructed, with techniques refined through the years. It is then of great interest to

apply this limit to these models: on one side, some open issues in F-theory models can be

better addressed in type IIB, leading to intuition on how to approach them in the F-theory

language. On the other side, new type IIB phenomena can be discovered starting from the

known F-theory models. A recent example of this can be found in [27], where it was shown

that the F-theory E6 point Yukawa coupling is possible also in the perturbative type IIB

string theory: it is generated by a D1-instanton in the corresponding perturbative type IIB

setup if the CY threefold has a conifold singularity.

For some of the global models that are present in literature, especially those support-

ing an SU(5) GUT spectrum, the weak coupling limit has been studied [27–42], leading

to the fruitful exchange described above. More recently, also globally consistent MSSM-

like models [43–48] or U(1) extensions of it [49, 50] have been constructed in F-theory.

Similarly, alternative unification schemes such as Pati-Salam grand unification and Trini-

fication have been contemplated [47, 51], in addition to previous constructions based on

SO(10) GUTs [52–54]. It is then a natural question whether it is possible or not to have

analogous versions of them in the perturbative type IIB picture and if so, whether these

are competitive with the F-theory regime from a phenomenological point of view.

Following these motivations, in this work we study the weak coupling limit of MSSM-

like models constructed recently within the context of F-theory. We will concentrate only

– 2 –



J
H
E
P
0
3
(
2
0
1
8
)
1
0
7

on models where the type IIB CY threefold is smooth. For the SU(5) models, this re-

quirement discarded the top Yukawa coupling also in the F-theory compactification. In

contrast to this, in the considered MSSM-like models the would-be conifold points do not

correspond to any of the Yukawa points. Therefore, excluding these singular points in the

CY threefold does not prevent from any coupling that is present in the class of F-theory

models we consider.

We start our analysis by taking the SU(3)×SU(2)×U(1) MSSM-like model constructed

in [47, 51]. Here we apply the methods developed in [50] to compute the possible verti-

cal G4-fluxes keeping the base of the elliptic fibration generic. We then apply the weak

coupling limit to the elliptically fibered CY fourfold and find the corresponding type IIB

configuration. With this at hand, we are able to work out all the possible gauge fluxes

that satisfy the D5-tadpole cancellation condition in type IIB. An analogous procedure

has been implemented in [34] for SU(5) × U(1)X models, where the corresponding type

IIB setup was found to be made up of a U(5) D7-brane stack (plus its orientifold image)

and a U(1) D7-brane (plus its orientifold image). The diagonal U(1) gauge bosons of the

two stacks are massive due to the so called geometric Stückelberg mechanism [34, 55, 56];

however, a linear combination of them remains massless and maps to the massless U(1)X
in F-theory. The authors were able to match all the vertical harmonic G4 fluxes with the

type IIB D5-tadpole canceling fluxes, including the only flux along a massive U(1) that

does not induce a D5-tadpole. Let us comment on the last flux: the massive U(1) fluxes are

believed to be described generically in F-theory by non-harmonic four-forms [56]. In [34]

the question was then raised whether the F-theory D5-tadpole condition found in [56] was

able to cancel the non-harmonic part of all such fluxes, as in their example this actually

happened. Instead, in our example, we have found a massive U(1) flux in type IIB that

is not described by a harmonic vertical flux in the resolved F-theory manifold. Hence, it

seems that the D5-tadpole cancellation condition does not prevent having fluxes that do

not lie among the harmonic four-forms of the fourfold. However, we will show that these

fluxes always violate the D-term condition, if all the matter field’s vevs are set to zero.

In other words, we will see that these fluxes generate a T-brane background [57–60] in a

supersymmetric configuration, that obstructs the resolution [61, 62]. Hence the match of

these fluxes with harmonic four-forms on the resolved fourfold is not a well-posed problem.

We study also the more refined MSSM-like models of [49, 50] where an extra massless

U(1) is added and a richer structure of matter curves is realized. As a preparation for this

analysis we study a simpler U(1)×U(1) model [17, 20, 63–65]. In both cases we match the

7-brane configurations, the fluxes and the chiral spectrum. Again we find a massive U(1)

flux in type IIB that is not described by a harmonic vertical G4 flux in the resolved fourfold.

Finally we explore the weak coupling limit of some other interesting models: these

are toric hypersurface fibrations with fibers in the toric ambient spaces PF3 and PF1 . The

first is a model exhibiting a single U(1) symmetry with a particular charge spectrum, since

in addition to singlets with charge one and two, it also contains a massless singlet with

charge three [51]. We discuss the weak coupling limit of this model and find the D7-brane

setup which realizes the charge three singlet (the 3 comes merely from the massless linear

combination of the standard massive U(1)’s in type IIB). Interestingly, we notice that in
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type IIB it is not possible to Higgs these models to produce a 3-index states as it is instead

possible in F-theory [66].

The latter model, which is based on PF1 , exhibits a Z3 discrete gauge symmetry [51, 67].

It is also shown to have a weak coupling limit where the discrete symmetry stems as a

discrete remnant of a global U(1) symmetry. By using the weak coupling limit we are able

to derive the number of chiral states, that in F-theory is very hard to compute.

In our analysis we also encounter something peculiar: some matter curves that in type

IIB are distinguished by a massive U(1) symmetry, join into one curve in F-theory. This

is a manifestation that the corresponding global U(1) symmetry is not a true symmetry

of the full setup. In fact, this symmetry is known to be broken to a discrete subgroup

(possibly trivial) by non-perturbative effects also in the type IIB context [68–73]. Our

claim is that the two distinguished curves one finds at weak coupling have matter with

the same charge under the surviving discrete subgroup. We check this in the simple model

mentioned above, where the discrete Z3 can be detected directly in F-theory.

This paper is organized as follows: in section 2 we introduce the Sen limit, presenting

a simple exemplifying model with one massless U(1). In section 3 we consider the weak

coupling limit of the MSSM-like model of [47], we discuss the matter content and the

possible vertical G4-fluxes and we work out the corresponding perturbative type IIB setup;

we finally apply the results to a model with a specific base space. In section 4 we discuss

the weak coupling limit of a two (massless) U(1) model which is constructed by considering

an elliptic fibration with the fiber cut as a hypersurface in the 2D toric ambient space PF5 .

This constitutes a preamble to section 5 where we consider the U(1) extended MSSM-like

model of [49, 50]. There, by a careful match of geometric properties as well as the flux

directions we show that these models also exhibit a weak coupling limit. In section 6 we

explore the Sen limit of some other interesting models with charge three states and discrete

symmetries. Finally in section 7 we present our conclusions.

2 F-theory models in the perturbative type IIB limit

Supersymmetric F-theory compactifications to four dimensions require a Calabi-Yau four-

fold that is elliptically fibered over a base manifold B3. When the elliptic fibration has a

section, the fourfold can be described by a Weierstrass model:

y2 = x3 + f x z4 + g z6 . (2.1)

The fiber coordinates x, y, z are embedded into P2
123 and are taken to be sections of (K̄B ⊗

F )⊗2, (K̄B ⊗F )⊗3 and F , respectively; where F corresponds to the line bundle associated

with the hyperplane section of that space and K̄B is the anticanonical bundle of the base B3.

It follows that f and g are sections of K̄⊗4
B and K̄⊗6

B , respectively. For later convenience,

they can be rewritten in terms of b2, b4 and b6 where bi is a section of K̄⊗iB :

f = −b
2
2

3
+ 2b4 , g =

2

27
b32 −

2

3
b2b4 + b6 . (2.2)

The discriminant locus, where the 7-branes are located, is given by

∆ = 4f3 + 27g2 = 4 b22
(
b2b6 − b24

)
− 36 b2b4b6 + 32 b34 + 27 b26 (2.3)
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and the j-function is

j(τ) =
4 (24f)3

∆
. (2.4)

The Sen’s weak coupling limit [25] is a limit in the complex structure moduli space that

makes the axio-dilaton become constant almost everywhere in the Type IIB space-time.

Let us scale the bi’s with a parameter ε in the following way:

b2 → ε0 b2 , b4 → ε1 b4 , b6 → ε2 b6 . (2.5)

When ε → 0, the j-function of the elliptic fiber grows as ε−2 (away from the vicinity of

b2 = 0); correspondingly, the string coupling becomes small almost everywhere over the

base space B3. In fact, for small ε, the discriminant becomes

∆→ −4 ε2b22∆E +O(ε3) where ∆E ≡ b24 − b2b6 , (2.6)

i.e. the discriminant locus factorizes into two components:

b2 = 0 and ∆E = 0 . (2.7)

By looking at the monodromy of the elliptic fiber around such loci, one discovers [25] that

the first one is an O7-plane and the second one gives the location of perturbative D7-branes.

Since the O7-plane is the fixed point locus of the orientifold involution, the perturbative

type IIB double cover CY threefold (covering twice the base B3) is

ξ2 = b2 , (2.8)

with ξ a section of K̄B and where the orientifold involution is (−1)FLΩpσ, with σ : ξ 7→ −ξ.
If we introduce the coordinate x = x− 1

3b2z
2 and rewrite the Weierstrass equation by

using the parametrization (2.2) for f and g we find1

y2 = x3 + b2 x
2 z2 + 2b4 x z

4 + b6 z
6 . (2.9)

In this form, the sections bi’s defining the perturbative O7 and D7 data appear in a simple

way. We will use this form of the elliptic fibration in the rest of the paper.

Keeping the bi’s form generic one has a smooth Calabi-Yau fourfold. At weak coupling

one finds only one invariant D7-brane described by the equation b24−ξ2b6 and supporting no

massless gauge boson. Due to the form of the equation this has been called in literature a

Whitney brane. To obtain a more interesting 7-brane setup, one needs to specialize the form

of the bi’s. In F-theory one obtains then singularities of the elliptic fibrations; at weak cou-

plings the Whitney brane splits into stack of D7-branes supporting Abelian or non-Abelian

gauge groups and charged matter. We will see a relevant example in the next section.

1When we rescale the bi’s as in (2.5), this equation describes a family of Calabi-Yau fourfolds over the

ε-plane. At ε = 0, the elliptic fiber degenerates over all points of B3. What is worse b4 and b6 become zero,

i.e. the information on the location of the D7-brane locus, is lost completely. In [26, 74] it has been studied

how to deal with such a degeneration.
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2.1 Example: one massless U(1)

Massless U(1)’s gauge bosons are obtained in F-theory if the elliptic fibration has extra

(possibly rational) sections. In [75], the generic form of an elliptic fibration with one extra

section has been worked out. The corresponding Weierstrass model in the notation of [75] is

y2 = x3 +

(
c1c3 − b2c0 −

c2
2

3

)
x+ c0c

2
3 −

1

3
c1c2c3 +

2

27
c3

2 −
2

3
b2c0c2 +

b2c2
1

4
, (2.10)

where we set z = 1 (the interesting physics happens in this patch). Written in terms of

the variable x = x− 1
3b2z

2, the defining equation takes the form

y2 = x3 + c2x
2 +

(
c1c3 − b2c0

)
x + c0c

2
3 − b2c0c2 +

b2c2
1

4
, (2.11)

where b, c0, c1, c2 and c3 are generic sections of the line bundles B, K̄⊗4 ⊗ B̄⊗2, K̄⊗3 ⊗ B̄,

K̄⊗2 and K̄ ⊗ B respectively (with B an arbitrary line bundle on B3).

This fourfold has two conifold-like singularities along two curves on the base B3. They

are both resolvable and this signals the presence of a massless U(()1) gauge boson in the

low dimensional effective theory [56]. The extra-divisor giving the massless U(()1) gauge

bosons (from the redution of C3) is the new rational section. Matter fields live on these

curves and are charged under the U(()1) gauge group. The fields living on one curve have

double the charge of the fields living on the other curves. Setting charge equal to 1 for the

latter, the former are charge 2 fields [75].

Let us see now the weak coupling limit. The bi’s take now the particular form

b2 = c2 , (2.12)

b4 =
1

2

(
c1c3 − b2c0

)
, (2.13)

b6 = c0c
2
3 − b2c0c2 +

b2c2
1

4
. (2.14)

We need to rescale the sections b and ci’s such that the bi’s scale as (2.5). We want to do

this in the most generic way, i.e. without generating extra matter and extra gauge group

factor with respect to the F-theory setup under consideration. A proper choice is2

b→ ε0 b , c0 → ε2 c0 , c1 → ε1 c1 , c2 → ε0 c2 , c3 → ε0 c3 . (2.15)

We notice that at weak coupling the b4 loses one term and factorizes as b4 = c1c3
2 . After

the limit, the D7-brane configuration we obtain is given by:

∆E = 0 with ∆E =
(
c2

3 − c2b
2
)(c2

1

4
− c2c0

)
. (2.16)

The O7-plane is at the locus c2 = 0. On the CY ξ2 = c2, the D7-brane locus becomes

∆E = (c3 − ξb) (c3 + ξb)

(
c2

1

4
− ξ2c0

)
. (2.17)

2An equivalent choice is b→ ε1 b, c0 → ε0 c0 , c1 → ε0 c1 , c2 → ε0 c2 , c3 → ε1 c3 .
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section Line Bundle

u O(H − E1 − E2 − E4 + S9 +KB)

v O(H − E2 − E3 + S9 − S7)

w O(H − E1)

e1 O(E1 − E4)

e2 O(E2 − E3)

e3 O(E3)

e4 O(E4)

Figure 1. The polytope F11 and its dual. The table contains the divisor classes of the coordinates

in PF11
.

We recognize a system of one U(1) brane and its orientifold image, plus a Whitney brane.

The two U(1) branes are in the same homology class and hence the U(1) gauge boson is

massless (if no gauge flux is switched on). The matter occurs at the D7-brane intersections.

We have a charge 1 state at the intersection of the U(1) brane with the Whitney brane and

one charge 2 state at the intersection of the U(1) brane with its image. We obtain the same

spectrum as at strong coupling, i.e. we are describing the same physical configuration at

weak and strong coupling. This is an important requirement to fulfill in order to claim to

have a weakly coupled description of the F-theory setup. For several cases, a weak coupling

limit is possible (in the sense that the string coupling is small everywhere) but at the price

of generating extra gauge groups (see [36]).

3 An MSSM-like F-theory model

In this section we study a phenomenologically more interesting case, i.e. an elliptic fibration

supporting the Standard Model spectrum.

3.1 F-theory description

3.1.1 Geometric setup

In this model the elliptic fiber is described as an hypersurface in the 2D toric ambient space

PF11 . This is associated to the polytope F11 depicted in figure 1. In the associated table,

we can read the coordinates and their associated line bundle classes. These are written as

O(D), with D a divisor of the fourfold, written as a linear combination of the base divisors3

KB (the canonical class of B3), S7 and S9 and the divisors H,E1, E2, E3, E4. The defining

equation is pF11 = 0, with

pF11 =s1e
2
1e

2
2e3e

4
4u

3 +s2e1e
2
2e

2
3e

2
4u

2v+s3e
2
2e

2
3uv

2 +s5e
2
1e2e

3
4u

2w+s6e1e2e3e4uvw+s9e1vw
2 ,

(3.1)

3We will often use the same symbol for the divisor D in B3 and the vertical divisor in Y4 given by

the elliptic fibration over D. We will call D also its Poincaré dual two-form on B3 and the corresponding

pullback π̂∗(D) that is Poincaré dual to the vertical divisor (π̂ : Y4 → B3 is the projection from the elliptic

fibration to the base manifold).
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Representation Locus

(3,2)1/6 {s3 , s9}
(1,2)−1/2 {s3 , s2s

2
5 + s1(s1s9 − s5s6)}

(3,1)−2/3 {s5 , s9}
(3,1)1/3 {s9 , s3s

2
5 + s6(s1s6 − s2s5)}

(1,1)1 {s1 , s5}

Table 1. Matter representations of SU(3) × SU(2) × U(1) appearing in the XF11
-model, together

with their associated codimension-two loci. The charge under the U(1)Y generator is indicated by

a subscript.

where si are sections of suitable line bundles, chosen such that pF11 = 0 defines a Calabi-

Yau manifold. One can write the corresponding classes in terms of the anticanonical class

of the base, and two extra divisor classes S7 and S9:

s1 s2 s3 s5 s6 s9

3K̄B − S7 − S9 2K̄B − S9 K̄B + S7 − S9 2K̄B − S7 K̄B S9

. (3.2)

By means of Nigell’s algorithm one can work out the Weierstrass form (2.1) of the

CY (3.1), with the following expressions for f , g and the discriminant ∆

f = −1

3

(
s2

6

4
− s2s9

)2

+ 2

(
−1

4
s3s9(s5s6 − 2s1s9)

)
, (3.3)

g =
2

27

(
s2

6

4
− s2s9

)3

− 2

3

(
s2

6

4
− s2s9

)(
−1

4
s3s9(s5s6 − 2s1s9)

)
+

1

4
s2

3s
2
5s

5
9 , (3.4)

∆ =
1

16
s2

3s
3
9

[
s3s

3
5s

3
6 − s2s

2
5s

4
6 + s1s5s

5
6 + 27s2

3s
4
5s9 − 36s2s3s

3
5s6s9 + 8s2

2s
2
5s

2
6s9

+ 30s1s3s
2
5s

2
6s9 − 8s1s2s5s

3
6s9 − s2

1s
4
6s9 − 16s3

2s
2
5s

2
9 + 72s1s2s3s

2
5s

2
9

+ 16s1s
2
2s5s6s

2
9 − 96s2

1s3s5s6s
2
9 + 8s2

1s2s
2
6s

2
9 − 16s2

1s
2
2s

3
9 + 64s3

1s3s
3
9

]
.

(3.5)

Notice that (3.1) is the resolved version of the given Weierstrass model. We will call both

spaces Y4 in the following, which one we mean will be clear from the context.

Following Kodaira’s classification, the vanishing order of the above quantities confirm

that the fiber degenerates to an I2-fiber over the locus {s3 = 0} and to an I3-fiber over

the locus {s9 = 0}. The matter content for this model has been computed in refs [47, 51]

and it is summarized in table 1. By looking at the Tate form of the present fourfold, one

moreover realizes that the I2-fiber is associated to a Sp(1) ∼= SU(2) gauge group, while the

A2 singularity is ‘split’ and the gauge group is SU(3) [76].4

4One can see this by shifting the x coordinate to x and realizing that the coefficient of x2 becomes a

square on top of s9 = 0.
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By comparing (3.3) and (3.4) with (2.2), one extracts the expressions for the sections

bi’s:

b2 =
s2

6

4
− s2s9 , (3.6)

b4 = −1

4
s3s9(s5s6 − 2s1s9) , (3.7)

b6 =
1

4
s2

3s
2
5s

2
9 . (3.8)

The defining equation for our CY fourfold is then

y2 = x3 +

(
s2

6

4
− s2s9

)
x2 z2 − 1

2
s3s9(s5s6 − 2s1s9) x z4 +

1

4
s2

3s
2
5s

2
9 z

6 . (3.9)

Over the codimension-one loci in B3 where the non-Abelian gauge group live, the

singular point in the fiber is given by:

{s3 = 0} : [x : y : z] = [0 : 0 : 1] , (3.10)

{s9 = 0} : [x : y : z] =

[
− s

2
6

12
: 0 : 1

]
. (3.11)

The Weierstrass model includes naturally the zero section

S0 : [x : y : z] = [1 : 1 : 0] . (3.12)

In order to devise the location of the extra section one can rewrite (3.9) in the factorized

form (in the patch z = 1) as(
y− 1

2
s3s5s9

)(
y+

1

2
s3s5s9

)
= x

(
x2+

(
s2

6

4
−s2s9

)
x− 1

2
s3s9(s5s6−2s1s9)

)
, (3.13)

from which one can obtain the fiber coordinates of the extra section:5

S1 : [x : y : z] =
[
0 :

s3s5s9

2
: 1
]
. (3.14)

From these two inequivalent sections one obtains the Shioda map for the generator of a

geometrically massless U(1) symmetry:

σ1 = S1 − S0 +KB +
1

2
DSU(2) +

1

3

(
D

SU(3)
1 + 2D

SU(3)
2

)
. (3.15)

The exceptional divisors DSU(2) and D
SU(3)
1 , D

SU(3)
2 are given by the following divisors in

figure 1:

DSU(2) = [e1] D
SU(3)
1 = [e2] , D

SU(3)
2 = [u] . (3.16)

5One can actually read two extra sections, the second being at [x : y : z] =
[
0 : − s3s5s9

2
: 1
]
. This second

one however is not independent from the given ones.
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3.1.2 Fluxes and chiral matter

In order to obtain the chiral indices associated to the different matter curves present in

this model, we have to construct the G4 fluxes that lie inside the primary vertical cohomol-

ogy H
(2,2)
V (Y4) [77], where Y4 is the resolved foufold defined by the equation (3.1).6 The

relevance of the vertical fluxes for the chiral spectrum was first noticed in [15, 33, 80, 81]

where explicit examples were constructed and the generated chiral spectrum computed.

For the chosen setup, the vertical fluxes have been explictly constructed for a particular

base choice, B3 = P3, in [47]. In this work we follow instead the methods of [34, 50, 82],

which enables us to address the issue of fluxes in a base independent way.

The vertical cohomology H
(2,2)
V (Y4) is constructed as a quotient ring at grade two. Its

elements are linear combinations of products DA∧DB, with {DA} (A = 0, . . . , h(1,1)(Y4)−1)

a basis for H(1,1)(Y4). The vertical flux can then be written as

G4 = cABDA ∧DB , (3.17)

with some coefficients cAB. In the following we will often omit the ∧ symbol.

In all cases of our interest the Calabi-Yau fourfold is described as a toric hypersuface,

where all the two-forms of the Calabi-Yau Y4 are pullbacks of two-forms in its correspond-

ing ambient space X5. Of particular importance are the quartic intersections in Y4, which

in our case can be related to the quintic intersections in the ambient space. The quintic in-

tersections can be computed as a polynomial ring at grade five, modulo the Stanley-Reisner

ideal (SR) and modulo linear relations (LIN) that can be read off from the toric diagram

of the fiber ambient space. After imposing a few (known) explicit fiber intersections one

can readily express any quintic intersection in terms of cubic intersections in the base B3

DA1DA2DA3DA4DA5 = cA1A2A3A4A5
α1α2α3

Dα1Dα2Dα3 , (3.18)

with Dα being base divisors.

The computation of the quartic intersections in the Calabi-Yau fourfold Y4 relies on the

quintic intersections in the ambient space X5. Taking any product of divisors at degree four

DA1DA2DA3DA4 together with the class of the hypersurface [pT ] gives a quintic intersection

in the ambient space which corresponds to the quartic intersection DA1DA2DA3DA4 in the

fourfold, i.e.

H(4,4)(Y4) ∼=
Q[DA]4 ∧ [PF11 ]

SR + LIN
⊂ H(5,5)(X5) . (3.19)

With the quartic intersection numbers at hand we can discuss the physical requirements

that have to be imposed on the G4 flux. These are called transversality constraints and

correspond to demanding that certain Chern-Simons coefficients vanish [20, 81, 83–86]:

Θ0α =
1

2

∫
Y4

G4 ∧ S0 ∧Dα = 0 , (3.20)

Θαβ =
1

2

∫
Y4

G4 ∧Dα ∧Dβ = 0 . (3.21)

6If one is interested in the full massless spectrum, including vector-like matter, more refined techniques

must be used [78, 79].
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Here Dα denote the vertical divisors. The previous conditions are necessary in order to

ensure that the resulting four dimensional theory is Lorentz invariant [83]. Additionally

we want to ensure that all non-Abelian gauge symmetries remain unbroken, which is guar-

anteed by the following condition

Θmα =
1

2

∫
X
G4 ∧ Em ∧Dα = 0 , (3.22)

with Em being the exceptional divisors associated to the non-Abelian factors.

The vertical flux takes the form

G4 = cIG
(I)
4 , (3.23)

with {G(I)
4 } being a set independent solutions to eqs. (3.20)–(3.22). For the case we are

concerned with, the basis of divisors reads

DA = {S0, S1, Dα, D
SU(2), DSU(3)1 , DSU(3)2} (3.24)

with Dα the vertical divisors associated with the elements of a basis for H(1,1)(B), i.e.

α = 1, . . . , h(1,1)(B), and DSU(2), DSU(3)1 , DSU(3)2 the exceptional divisors in the resolved

fourfold. Out of all vertical divisors Dα we distinguish among the subspace f = 〈K̄B,S7,S9〉
whose generators determine the fibration structure. For the purposes of our entire discus-

sion it is irrelevant whether or not they are linearly dependent. One can always express a

base divisor as a linear combination of the elements of f and of some remaining independent

divisors, that we denote as D′α, α = 1, . . . , h(1,1)(B)− rk(f).

A simple Mathematica code can be used to compute the quintic intersections in the

ambient space upon reduction of quintic monomials in a Groebner basis for the Stanley-

Reisner ideal. As said above, the quartic intersections on the fourfold Y4 can be easily

computed by intersecting four divisors with the class of Y4 in the ambient space. After

imposing the transversality constraints and getting rid of redundant flux pieces, we find

the following expression for the G4 flux over a generic base B3:7

G4 = F ∧ σ1 + Λ
(
6K̄2

B + K̄BS0 + S2
0 − 5K̄BS7 + S2

7 − 2K̄BS9 + S7S9

)
, (3.25)

where σ(S1) is the Shioda map of the section S1 given in (3.15), and F = γαDα (with

α = 1, . . . , h(1,1)(B)) is a vertical divisor. The coefficients γα and Λ are subject to the

flux quantization condition and must also be in agreement with the cancellation of the

D3-tadpole [87].

We can finally use the flux to compute the chiral indices for the matter representations.

These are given by integrating the flux G4 on the corresponding matter surfaces [6, 88].

These matter surfaces can be described as algebraic four-cycles in X5 (the pushforward of

the surfaces on Y4 via the embedding map). For a given representation R there will be a

six form [γR] Poincaré dual to the corresponding four-cycle, such that the chirality can be

computed as:

χ(R) =

∫
γR

G4 =

∫
X5

G4 ∧ [γR] . (3.26)

7For the case of base B3 = P3, with K̄B = 4H, S7 = n7H, S9 = n9H and H being the hyperplane class

in P3, we can show that the flux expression correctly reduces to the one found in [47].
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Representation G4 = F ∧ σ1
G4 = Λ(6K̄2

B + S2
0 + S7(S7 + S9)

+K̄B(S0 − 5S7 − 2S9))

(3,2)1/6
1
6FK̄B(K̄B + S7 − S9) 0

(1,2)−1/2
1
2F(K̄B + S7 − S9)((−6K̄B + 2S7 + S9)

2Λ(K̄B + S7 − S9)

×(2K̄B − S7)(3K̄B − S7 − S9)

(3,1)−2/3 −2
3FS9(2K̄B − S7) ΛS9(2K̄B − S7)(3K̄B − S7 − S9)

(3,1)1/3
1
3FS9(5K̄B − S7 − S9) −ΛS9(2K̄B − S7)(3K̄B − S7 − S9)

(1,1)1 F(2K̄B − S7)(3K̄B − S7 − S9)
Λ(2K̄B − S7)(3K̄B − S7 − S9)

×(−4K̄B + 2S7 + S9)

Table 2. Chiralities for the charged matter in the F11 model over a generic base. It is understood

that the triple intersection numbers are to be computed over the base B3.

The chiralities for the charged states are summarized in table 2. By the procedure outlined

above, they can be written as cubic intersections in the base B3.

We finish this section with an observation. In the absence of the SU(2) singularity

the gauge symmetry reduces to SU(3) × U(1). One can show that in this case the Λ flux

simplifies to

GΛ
4 = 12K̄2

B + K̄BS0 + S2
0 − 10K̄BS9 + 2S2

9 , (3.27)

and it becomes equivalent to a flux of the form (−6K̄B + 3S9) ∧ σ1. This is in agreement

with the observations of [34], stating that for SU(n)×U(1) models only fluxes of the form

F ∧ σ are allowed for n < 5.

3.2 The weak coupling limit

In order to take the weak coupling limit we follow the same procedure we used in the

example in section 2.1. We need to find a scaling of the sections si’s such that the bi’s

in (3.6) scale as (2.5). A proper choice is8

s1 → ε1s1, s3 → ε0s3, s5 → ε1s5, s6 → ε0s6, s9 → ε0s9 . (3.28)

The double cover CY threefold X3 is described by the following equation

ξ2 =
s2

6

4
− s2s9 , (3.29)

where we used (2.8) and (3.6). In order to prevent a conifold singularity along the locus

ξ = s6 = s9 = s2 = 0 we will consider bases B3 for which this locus is empty. Dealing with

smooth CYs allows us to compute the relevant quantities through standard techniques;

this makes the match with the F-theory result easier to check. However, one may deal with

such singular CY threefolds by using non-commutative resolution techniques, as explained

8One may also choose to scale only s3; however this choice is equivalent to (3.28), as s3 appears always

in product with either s1 or s5.
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in [27]. From equation (3.29), one sees that the divisor {s9 = 0} (and {s2 = 0} as well)

splits into two components:

W ≡
{
s9 = 0, ξ − 1

2
s6 = 0

}
and W̃ ≡

{
s9 = 0, ξ +

1

2
s6 = 0

}
. (3.30)

These two divisors are in different homology classes in X3 and are mapped to each other

by the orientifold involution ξ 7→ −ξ.

3.2.1 D7-brane setup

One can now look at the D7-brane locus ∆E = 0 at weak coupling:

∆E =
s2

3s
3
9

4

(
s1s5s6 − s2s

2
5 − s2

1s9

)
. (3.31)

Intersecting the D7-brane locus ∆E = 0 with the CY equation (3.29) one obtains the

following D7-branes (see figure 2):

• U(3) stack: there are three D7-branes wrapping the divisor W and their images

wrapping the divisor W̃ . Since the two divisors are in different homology classes, a

geometric Stückelberg mechanism occurs making the diagonal U(1) massive [89–91].

• SU(2) stack: there are two D7-branes wrapping the invariant irreducible divi-

sor U ≡ {s3 = 0}. The two branes are image to each other and they support an

Sp(1) ∼= SU(2) massless gauge boson. The diagonal U(1) vector multiplet is pro-

jected out of the spectrum by the orientifold, even though there is still the possibility

to have a gauge flux associated with this U(1) that is the pull-back of a CY odd form

to the invariant divisor U .

• U(1) stack: the remaining locus in ∆E is

∆rem
E ≡ s2s

2
5 − s6s1s5 + s9s

2
1 = 0 . (3.32)

When we intersect this locus with the CY equation (3.29) it factorizes into two

divisors [34]. These can be described algebraically as non-complete intersections by

the following equations

V ≡
{
s1s9 + s5

(
ξ − s6

2

)
= 0 , s5s2 − s1

(
ξ +

s6

2

)
= 0 , eq. (3.29)

}
, (3.33)

Ṽ ≡
{
s1s9 − s5

(
ξ +

s6

2

)
= 0 , s5s2 + s1

(
ξ − s6

2

)
= 0 , eq. (3.29)

}
. (3.34)

Again these loci are in different homology classes and hence the associated U(1) is

massive. We will see that however a linear combination of the two massive U(1)s (the

second being the one supported on the U(3) locus) is in fact massless [34].

At this point it is convenient to remark some homological relations among the four-

cycles we have just specified. First of all, it is possible to relate divisor classes of the base
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V Ṽ

W W̃

U

O7

Figure 2. Schematics of the brane stacks in the weakly coupled type IIB limit.

B3 to divisor classes of the double cover the Calabi-Yau threefold X3. The pullback to X3

of the anticanonical divisor of B3 coincides with the class of the orientifold plane

π∗(K̄B) = [ξ] = DO7 , (3.35)

where π : X3 → B3 is the two-to-one projection. Similarly, one can show that

π∗([s9]) = W + W̃ and π∗([s3]) = U . (3.36)

As stated above, we will focus only on models with non-singular X3 at weak coupling.

Hence we require the absence of the conifold singularity9 at

s9 = s6 = s2 = 0 . (3.37)

In other words, we have the vanishing of the following triple intersection [34]∫
X3

DO7(2DO7 −W+)W+ =

∫
X3

DO7(2DO7 − (W + W̃ ))(W + W̃ ) = 0 , (3.38)

where we have defined W± ≡ W ± W̃ as orientifold even and odd combinations. One can

additionally prove the following relations [34]:

DO7W = DO7W̃ = WW̃ ⇒ W 2
+ −W 2

− = 2DO7W+ , DO7W− = 0 . (3.39)

Note that (3.39) contains more information and automatically implies eq. (3.38).

One can also find the class of V and Ṽ : consider the locus s9∆rem
E = 0. It is in the

class 2(4DO7 − U − (W + W̃ )). If we intersect it with the CY equation (3.29), this locus

factorizes as

s9∆rem
E =

(
s1s9 + s5

(
ξ − s6

2

))
·
(
s1s9 − s5

(
ξ +

s6

2

))
. (3.40)

9In SU(5) F-theory models, the absence of this point is related to the absence/smallness of the top

Yukawa 10 ·10 ·5 [27, 92]. For the SU(3)×SU(2)×U(1) model the conifold singularity happens away from

any of the Yukawa points {s3 = s5 = s9 = 0} and {s3 = s9 = s1s6 − s2s5 = 0}, corresponding to the top

and bottom quark Yukawas, respectively.
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Both components are in the homology class 4DO7 − U − (W + W̃ ). By using the defining

equations for W, W̃ , i.e. (3.30), and for V, Ṽ , i.e. (3.33) and (3.34), one sees that the first

component is in the class V + W , while the second is in the class Ṽ + W̃ . Hence we

conclude that

V = 4DO7 − (2W + W̃ )− U , Ṽ = σ∗V , (3.41)

which of course is consistent with the D7 tadpole cancellation condition

(V + Ṽ ) + 2U + 3(W + W̃ ) = 8DO7 . (3.42)

Let us now comment on the U(1) symmetries. As we noticed above, in the type IIB

model we see two Abelian gauge symmetries: one is on the locus V (and its image Ṽ ),

while the other is the diagonal U(1) of U(3) on the locus W (and its image W̃ ). Since the

homology classes of these divisors are different from the ones of their orientifold images, the

corresponding U(1) gauge bosons are massive [89–91]. On the other hand, in F-theory we

have one massless U(1) gauge boson. Actually this happens also in the type IIB setting; in

fact, one linear combination of the massive U(1)’s is massless. The D7-brane worldvolume

coupling that gives mass to the gauge bosons is the following:∫
D7
C6 ∧ F . (3.43)

F is the four-dimensional gauge boson field strength. C6 is the RR six-form potential

(dual to C2). It is odd under the orientifold projection, hence it gives zero modes when

expanded along odd forms. The relevant zero modes for our discussion is a two-form

potential that appears in the expansion of C6 along odd four-forms. In the present example

h2,2
− (X3) = h1,1

− (X3) = 1, so that we have only one zero mode: C6 = c2 ∧ ω(−)
4 with

ω
(−)
4 ∈ H2,2

− (X3). From (3.43) we obtain the following terms in the four-dimensional action:∑
I=W,V

∫
R3,1

nIFI ∧ c2 . (3.44)

Here FI is the four-dimensional field strengths of the U(1) gauge boson living on the I-th D7-

brane wrapping the divisor DI . n
I is the coefficient of DI − σ∗DI along the odd generator

W− times the number of branes wrapping such divisor; in the present case, nW = 3 and

nV = −1. Upon dualization, the four dimensional two-form c2 becomes a pseudiscalar

axion that is eaten by one gauge boson, giving it a mass through what is known as the

geometric Stückelberg mechanism [56, 80, 89–91]. Since there is only one axion field,

only one linear combination of the two U(1) gauge bosons become massive, leaving the

orthogonal combination massless. The massless (hypercharge) U(1) generator is then

QY =
1

6
(3QV +QW ) , (3.45)

with QV being the charge under the U(1) associated to V and QW the charge under the

diagonal U(1) ⊂ U(3).
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The matter fields live at the intersections of the brane stacks. In the following we

list the matter content and the curves where they live. The fields will be labeled by their

transformation under the gauge groups: (RSU(3),RSU(2))
QY
(QV ,QW ), where (RSU(3),RSU(2))

is the representation under the SU(2) × SU(3) gauge group. Again (QV , QW ) denote the

charges under the U(1)V and the U(1)W ⊂ U(3) and QY is their massless combination

(even though it is determined by QV and QW , we write it explicitly for later use).

• WU : (3,2)
1/6
(0,1). The associated locus is given by the vanishing of the elements of

the following ideal {
s3 , s9 , ξ −

s6

2

}
. (3.46)

• Ṽ W : (3,1)
−2/3
(−1,−1). The associated locus is given by the intersection of the SU(3)

stack with the that of U(1) which is given in eq. (3.33):{
s9 , s5 , ξ −

s6

2

}
. (3.47)

• VW : (3,1)
1/3
(1,−1). The corresponding locus reads{

s9 , s2s5 − s1s6 , ξ −
s6

2

}
. (3.48)

• WW̃ : (3,1)
1/3
(0,2). The intersection is given by

{s9, s6 , ξ} . (3.49)

• UV : (1,2)
−1/2
(−1,0). The intersection is given by{

s3, s1s9 + s5

(
ξ − s6

2

)
, s5s2 − s1

(
ξ +

s6

2

)
, −ξ2 +

s2
6

4
− s2s9

}
. (3.50)

• V Ṽ : (1,1)1
(2,0). The intersection is given by{

s1, s5 , −ξ2 +
s2

6

4
− s2s9

}
. (3.51)

The loci of the complex conjugate representations, which appear at the image of the ones

above, are obtained by replacing ξ 7→ −ξ, in eqs. (3.46)–(3.51).

Note that one has an extra triplet in comparison to the F-theoretic spectrum. This is

due to the fact that in the limit ε→ 0, the curve (3,1)1/3 splits into two components. Its

ε dependent locus reads (see table 1)

{s9 , ε
2 s3s

2
5 + εs6(s1s6 − s2s5)} . (3.52)
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Taking the leading order in ε we find two irreducible components: the curve {s9, (s1s6 −
s2s5)} corresponding to the triplet (3,1)

1/3
(1,−1), and the curve {s9, s6} corresponding to

(3,1)
1/3
(0,2).

Let us comment on the splitting of the curves at weak coupling. Notice first that the F-

theory curves really split into two components when ε vanishes, i.e. at zero string coupling.

At this value the mass of the U(1) massive gauge boson becomes zero as well [37, 56]. For

small ε F-theory is already saying that something is happening: two curves supporting fields

that had different global charges join into one curve. However, in F-theory fields living on

the same curve should have the same charges under all the global symmetries. Hence one

concludes that the continue (massive) U(1) symmetry that is visible in perturbative type

IIB string theory must be broken, by some non-perturbative effect, to a discrete subgroup

Γ for which the massive U(1) charges gets identified (Γ may also be trivial). We will

investigate this issue in a simple model in section 3.3.

One may wonder if the extra symmetry at ε→ 0 prevents some couplings in type IIB

that are allowed in F-theory. This actually does not happen: all triple couplings present

in F-theory are also allowed in perturbative type IIB. Let us see how it works for some of

them: the coupling (3̄,1)−2/3(3̄,1)1/3(3̄,1)1/3 is localized in F-theory at the locus10

{ s5 = 0, s6 = 0, s9 = 0 } , (3.53)

where there is a gauge enhancement to SO(8). In type IIB this corresponds to the coupling

(3̄,1)
−2/3
(−1,−1)(3̄,1)

1/3
(1,−1)(3̄,1)

1/3
(0,2) where there is the intersection of the U(1) stack with the

U(3) stack and the orientifold plane (that actually gives again the enhancement to SO(8)).

Another important coupling is the down Yukawa coupling (3,2)1/6(3̄,1)1/3(1,2)−1/2. In

F-theory it occurs at the locus

{ s3 = 0, s9 = 0, s2s5 − s1s6 = 0 } . (3.54)

In type IIB we have two curves supporting the right-handed down quark: (3̄,1)
1/3
(1,−1) and

(3̄,1)
1/3
(0,2). We have then in principle two types of Yukawa couplings. However the coupling

(3,2)
1/6
(0,1)(3̄,1)

1/3
(0,2)(1,2)

−1/2
(−1,0) is forbidden by the massive U(1) symmetry (and in fact the

corresponding curves do not intersect geometrically). On the other hand, the allowed one,

i.e. (3,2)
1/6
(0,1)(3̄,1)

1/3
(1,−1)(1,2)

−1/2
(−1,0), is exactly at the same locus as (3.54).

Finally, notice that this structure allows a mechanism that suppresses the down Yukawa

coupling with respect to the top one in perturbative type IIB: if by a proper choice of

fluxes we have no chiral zero modes on the curve (3̄,1)
1/3
(1,−1), then we could forbid the

down Yukawa perturbatively. In F-theory this should correspond to having the field wave

function (determined by the same flux choice) localized all away from the Yukawa points.

The weak coupling limit will then split the F-theory curve, keeping all the zero modes of

the curve (3̄,1)
1/3
(0,2). At small ε this hierarchy should still work.

10This coupling violates baryon number and can potentially lead to proton decay. Its presence both in

F-theory and type IIB is a consequence of the lack of matter parity in these models. The realization of

realistic models from this type of constructions depends on a careful tuning of the Yukawa textures. This

might involve an appropiate choice of a base space on which the (3̄,1)−2/3(3̄,1)1/3(3̄,1)1/3 is forbbiden

geometrically and the right hierarchies could be achieved.
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3.2.2 Fluxes and chiralities

Having worked out the matter representation we proceed to the computation of the corre-

sponding chiralities. For this purpose we first need to deduce the gauge fluxes allowed by

the D5-tadpole cancellation condition:

0 =
∑
I

nI [DIFI + (σ∗DI)(σ
∗FI)] , (3.55)

where the index I runs over all brane stacks, DI is the divisor where the I-th brane stack

sits and nI the number of branes wrapping DI . FI are the gauge flux on the brane wrapping

DI . In principle it will be an element of H2(DI) (subject to a Freed-Witten quantization

condition [93, 94]). Since we are interested in the chiral spectrum, we will consider only

the subset of two-forms on DI that are the pull-back of two-forms on the CY threefold X3,

i.e. ι∗DIω with ω ∈ H2(X3). We will then omit the ι∗DI symbol.

For our concrete example, the condition (3.55) reads

0 = 3(W+F
W
− +W−F

W
+ ) + (V+F

V
− + V−F

V
+ ) + 2UFU−

= W−(3FW+ + F V+ ) + 3W+(FW− − F V− ) + 2U(FU− − F V− ) ,
(3.56)

after writing both fluxes and divisors in terms of orientifold odd and even components.

Note that, since the divisor U is orientifold-even, there is no even gauge flux on it that

leaves the SU(()2) gauge group unbroken. We can distinguish between purely even, purely

odd and mixed fluxes satisfying the D5-tadpole cancellation condition:

• Allowed even fluxes are (we write only the non-zero fluxes)

(FW+ , F V+ ) =

(
2λ

3
DO7, 0

)
, (FW+ , F V+ ) =

(
1

6
F,−1

2
F

)
, (3.57)

where F is an even two-form and λ a generic rational coefficient (that should satisfy

the proper quantization condition).

• In the orientifold odd sector we can see that the general solution to the D5-tadpole

implies FW− = F V− = FU− . As the flux is uniformly tuned over all divisors it can be

reabsorbed into the B field. This type of flux does not contribute to the chiral index

of any matter representation [55]; hence, we do not consider these odd type fluxes

any further.

• Finally, there are in principle two combinations of even and odd fluxes, i.e.

(FW+ , FW− ) = α

(
−1

3
W+,

1

3
W−

)
, (FW+ , FU− ) = β

(
−1

3
U,−1

2
W−

)
, (3.58)

with α and β generic coefficients. However, one can show that the α- and λ-

fluxes living on the U(3) stack are not independent: the first one is the two-form

FWα = −2α
3 ι
∗W̃ , while the second is FWλ = 2λ

3 ι
∗DO7 (where we made the pull-back

symbol explicit). From the identity (3.39), one can see that ι∗W W̃ = ι∗WDO7. For

this reason, to avoid redundancies, we will set α = 0. Moreover, notice that if the

homology class of U is proportional to the class of DO7, then ι∗UW− = 0 (see (3.39))

and the β-flux is also equivalent to the λ-flux.
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Rep. (FW+ , F V+ ) = (1
6F,−

1
2F ) (FW+ , F V+ ) = (2λ

3 DO7, 0) (FW+ , FU− ) = β(− 1
3
U, 1

2
W−)

(3,2)(0,1)
1
12FUW+

1
3λDO7W+U

1
12βU(6DO7 − 2U − 3W+)W+

(3,1)(−1,−1)
1
3F (−3DO7 + U +W+)W+

1
3λDO7W+(U −DO7) −1

6βU(5DO7 − U − 2W+)W+

(3,1)(1,−1)
1
6F (5DO7 − U − 2W+)W+

1
3λDO7W+(DO7 − U) −1

6βU(3DO7 − U −W+)W+

(3,1)(0,2)
1
6FDO7W+

2
3λD

2
O7W+

1
3βDO7UW+

(1,2)(−1,0)
1
4F (−8DO7 + 2U + 3W+)U 0 1

4βUW+(2DO7 −W+)

(1,1)(2,0)

1
2F (4DO7 − U + 2W+)

×(3DO7 − U +W+)
0 0

Table 3. Chiralities in the perturbative limit for the allowed D5-tadpole canceling fluxes. In the

central column we used the identity (3.38).

A generic flux choice will be a combination of the inequivalent fluxes described above and

it will then depend on the arbitrary data F, λ, β.

Having all the inequivalent allowed fluxes we proceed with the computation of the

chiral indices. For a given matter representation at the intersection of brane stacks a and

b, its corresponding chiral index is given by11

χ(Na,Nb) =

∫
X3

DaDb(Fa − Fb) , (3.60)

where Da and Db are the divisors on which the brane stacks sit, and Fa and Fb their

corresponding world-volume fluxes. For the case under consideration, the chiralities for

the pure even and mixed type fluxes are summarized in table 3.

Type IIB fluxes vs F-theory G4-flux. We can now check that the type IIB chiralities

match with the F-theory result. Since the states (3,1)(1,−1) and (3,1)(0,2) exhibit the same

hypercharge, their chiralities have to be added in order to match with the chirality of the

(3,1)1/3 on the F-theory side.

Let us also recall that the triple products of divisors in tables 2 and 3 mean triple

intersections in the base B3 and the threefold X3, respectively. Using the relations (3.35)

and (3.36) together with the fact that in the double cover Calabi-Yau the intersections are

twice as in the base, i.e.∫
X3

π∗(Da)π
∗(Db)π

∗(Dc) = 2

∫
B
DaDbDc , (3.61)

11In the case of symmetric and antisymmetric representations living at the intersections of brane/image

brane, the chirality equation picks the form:

χ(Na,Na′) =

∫
X3

Da(D̃a ±DO7)Fa , (3.59)

in which the plus sign gives the chirality of the symmetric and the minus, that of the antisymmetric

representation.
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one can immediately show that the first columns of tables 2 and 3 match after setting

F = π∗(F) .

The remaining F-theory Λ flux must be a combination of F , λ and β fluxes on the type

IIB side. The proper combination matching all the F-theory chiralities of the Λ flux is

F = −6ΛDO7 + 2ΛU + 3ΛW+ , λ = 0 , β = Λ . (3.62)

The previous equation holds also in cases when DO7, U and W+ are not linearly

independent.

Notice one relevant fact: while the massless U(1) fluxes match nicely, not all the type

IIB massive gauge fluxes have a counterpart in F-theory. The λ-flux is not represented

in F-theory by a harmonic vertical divisor. As mentioned in the introduction, we should

not switch on this flux in the resolved fourfold, because it breaks supersymmetry: let us

consider the FI-term generated by this flux in type IIB,

ξλ ∝
∫
W
DO7 ∧ J =

2

3
λ

∫
C
J . (3.63)

We see that it is proportional to the volume of the curve C = DO7 ∩W , that is the matter

curve where the anti-symmetric matter lives. In a smooth CY threefold this volume is

always finite and then the FI-term never vanishes. To preserve supersymmetry (D-term

condition) one then needs to have a non-vanishing vev for a charged field. In the 8-

dimensional theory living on the D7-brane, this corresponds to have a T-brane [57–60].

It is known that a T-brane obstructs a full resolution of the space [61, 62].12 Hence it is

not a well-posed problem to match this flux with a G4 in the resolved fourfold. However,

one may wonder whether there is a four-form G4 that has the same chiral intersections

and the D3-charge of the λ-flux in type IIB. This flux should be non-primitive (breaking

supersymmetry) and hence it may be harmonic or not.13

In [34] the λ-flux (for the SU(()5) model) was found among the harmonic vertical four-

forms, even if on a resolved four-fold this G4 violates the D-term conditions (analogously

with what happens in (3.63)). The authors of [34] raised the question whether all D5-

tadpole canceling fluxes (massless and massive) were at the end represented by harmonic

vertical divisors. The answer is negative: only part of them will behave in this way.

However in all the studied examples, all the (D5-tadpole cancelling) IIB fluxes that satisfy

the D-term condition with vanishing vev for the charged matter fields (in some corner of

the Kähler moduli space) are represented by harmonic four-forms in the F-theory resolved

manifold.

12There is also the option that the matter field vevs correspond to a deformation of the singularity; in

this case there would be nothing to resolve.
13Remember that the fact that the G4 flux satisfy the D-term condition implies that it is harmonic, but

if it violates the D-term condition it may be harmonic or not.
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Matching D3-tadpole and FI terms. If the matching prescription done above is cor-

rect, the fluxes should contribute the same D3-tadpole in type IIB and F-theory. Moreover

they should generate the same FI-term for the U(1) symmetry. Let us check this.

We first start with the matching of the flux-dependent part of the D3-tadpole. On the

F-theory side it is given by

QD3,F =
1

2

∫
Ŷ4

G4 ∧G4 , (3.64)

while in type IIB it is given by

QD3,IIB = −1

4

∑
i

ni

(∫
Di

F 2
i +

∫
D̃i

(σ∗Fi)
2

)
, (3.65)

that for the present case takes the form

QD3,IIB = −1

4

∫
X3

3W+[(FW+ )2 − (F V+ )2] + 8DO7(F V+ )2 + 2U [−(F V+ )2 + (FU− )2] . (3.66)

Let us consider the F vs F fluxes. In F-theory the flux G4 = F ∧ σ1 has the following

D3-charge:

QFD3,F =
1

2

∫
B
F2π̂∗(σ1 · σ1) = −1

2

∫
B

(
2K̄B −

2

3
S9 −

1

2
S3

)
F2 , (3.67)

where we have used the Neron-Tate height pairing b11 = −π̂∗(σ1 ·σ1) = K̄B + 1
3S9− 1

2S3 as

computed in [51], with S3 = K̄B +S7−S9 and with π̂ the projection map from the elliptic

fibration to the base B3. On the type IIB side we have the flux (FW+ , F V+ ) = (1
6F,−

1
2F ).

Substituting it into the expression (3.66) we obtain

QFD3,IIB = − 1

16

∫
X3

(
1

3
W+ + V+

)
F 2 = −1

4

∫
X3

(
2DO7 −

2

3
W+ −

1

2
U

)
F 2 , (3.68)

= −1

4

∫
X3

(
2π∗(K̄B)− 2

3
π∗(S9)− 1

2
π∗(S3)

)
π∗(F)2 , (3.69)

which matches with the F-theory result (we used the fact that DO7 = π∗K̄B, W+ = π∗S9,

U = π∗S3 and F = π∗(F)).

Next let us consider the contribution of the Λ-flux in F-theory and its counterpart in

type IIB. On the F-theory side the contribution to the D3-charge is

QΛ
D3,F = −Λ2

2

∫
B

(
6K̄B − 2S3 − 3S9

) (
4K̄B − S3 − 2S9

) (
3K̄B − S3 − S9

)
. (3.70)

On the type IIB side this flux is to be matched in part by an F -flux, with F = Λ(−6DO7 +

3W+ + 2U), together with the β-flux with β = Λ. Plugging FW+ = Λ(−DO7 + 1
2W+),

F V+ = Λ(DO7 − 3
2W+ − U) and FU− = ΛW−/2 in eq. (3.66), one obtains

QΛ
D3,IIB = −Λ2

4

∫
X3

(6DO7 − 2U − 3W+) (4DO7 − U − 2W+) (3DO7 − U −W+) , (3.71)
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that matches the F-theory result (after substituting DO7 = π∗K̄B, W+ = π∗S9, U = π∗S3

and F = π∗(F)).

A generic flux in F-theory is G4 = GF4 + GΛ
4 . Its contribution to the D3-charge also

includes a mixed term of the form
∫
GF4 ∧ GΛ

4 . On the other hand also a generic choice

for the type IIB fluxes will have some mixed contribution. By following the same type of

computation done above, one can show that the mixed term between F - and Λ-fluxes also

matches its type IIB counterpart.

Finally one has to match the FI terms. In F-theory, the FI term for the massless

hypercharge U(1) is given by:

FIYF ∼
1

2VB

∫
Ŷ4

J∧σ1∧G4

∼ 1

2VB

∫
B
J

[
−F

(
2K̄B−

2

3
S9−

1

2
S3

)
+Λ(4K̄B−S3−2S9)(3K̄B−S3−S9)

]
. (3.72)

From the type IIB perspective, the FI term is obtained as:

FIYIIB∼
1

6VX

∫
X3

(3V+tr(F V+ )−W+tr(FW+ )) (3.73)

∼ 1

2VX

∫
X3

J

[
−F

(
2DO7−

2

3
W+−

1

2
U

)
+Λ(4DO7−U−2W+)(3DO7−U−W+)

]
,

which matches the F-theory one.

Notice that these FI-terms are not proportional to the volume of a holomorphic curve.

Hence they can be zero in some corner of the Kähler moduli space.

Matching geometrical quantities. To conclude this section, we show that also the

geometric contribution to the D3-charge on the two sides match. The number of D3-branes

needed to cancel the D3-tadpole is given in F-theory by

ND3 =
χ(Y4)

24
−QD3,F , (3.74)

while in type IIB we have

ND3 =
χ(DO7)

6
+
χD7

24
−QD3,IIB . (3.75)

In these formulae, QD3,F and QD3,IIB are the flux contributions given in eqs. (3.64)

and (3.65). Above we have shown that these two quantities are equal to each other.

Therefore, the Euler number of the Calabi Yau fourfold must coincide with the quantity

4χ(DO7) + χD7, with

χD7 =
∑
I

NI(χ(DI) + χ(D̃I)) , (3.76)

and χ(D) the Euler characteristic of the divisor D, i.e.

χ(D) =

∫
D
c2(D) =

∫
X3

D(D2 + c2(X3)) . (3.77)
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x1 x2 x3 x4 x5 x6 x7 Deg. eqX3

1 1 1 1 1 0 0 5

0 0 0 0 1 1 0 2

0 0 0 1 0 0 1 2

Table 4. Scalings of the coordinates for the QdP7 space together with the multidegree of the

equation cutting the double cover Calabi-Yau threefold X3.

We start with the F-theory computation. The Euler characteristic of the Calabi-Yau

fourfold can be derived from the Chern class, which is computed by adjunction. In the

case under consideration we have

c(Y4) =
c(B3)c(PF11)

(1 + [pF11 ])
(3.78)

where [pF11 ] = K̄B + c1(PF11) is the class of the hypersurface described by pF11 = 0.

Working out the expansion we get c4(Y4). The integration of this form on the Calabi-Yau

fourfold reduces to cubic intersections on the base by means of the methods highlighted in

section 3.1.2. We finally obtain

χ(Y4) = 3

∫
B

(
4c2(B)K̄B + 48K̄3

B − 32K̄2
BS3 + 8K̄BS2

3

− 56K̄2
BS9 + 25K̄BS3S9 − 3S2

3S9 + 22K̄BS2
9 − 5S3S2

9 − 2S3
9

)
,

(3.79)

in agreement with the result of [47]. On the type IIB side we have

4χ(DO7)+QD7 = 4χ(DO7)+3(χ(W )+χ(W̃ ))+2χ(U)+(χ(V )+χ(Ṽ )) ,

= 3

∫
X3

(4c2(X3)DO7+44D3
O7−32D2

O7U+8DO7U
2−16D2

O7W+

+25DO7UW+−3U2W++2DO7W
2
+−5UW 2

+−2W 3
+) .

(3.80)

We see that the two contributions (3.79) and (3.80) match after we substitute c2(X3) =

c2(B) + K̄2
B. In fact, one has (again by adjunction)

c(X3) =
c(B)(1+[ξ])

1+2[ξ]
= 1+(c2(B)+c1(B)2)+(−2c1(B)3−c1(B)c2(B)+c3(B)) . (3.81)

3.3 A concrete example: the base as an orbifold of Q(dP7)2

We now consider an explicit example where the generic features described above become

concrete. On the type IIB side we take the Calabi-Yau threefold known as Q(dP7)2 [30,

31, 55]. It is a hypersurface in the toric ambient space defined in table 4 (the last column

shows the multidegree of the defining equation) and with the Stanley-Reisner ideal given

by {x1x2x3, x5x6, x4x7}.
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x1 x2 x3 s2 s6 s9 Deg. eqB3

1 1 1 2 1 0 5

0 0 0 1 1 1 2

Table 5. Degrees of the coordinates and of the equation defining the base B3.

A basis for H1,1(X3) is given by the divisor classes D1 = {x1 = 0} ∩X3, D6 = {x6 =

0} ∩X3 and D7 = {x7 = 0} ∩X3. Their intersection polynomial in the Calabi-Yau reads

I = 2(D3
7 +D3

6)+2D2
1(D7+D6)−D2

7(2D1+D6)−D2
6(2D1+D7)+D1D6D7 . (3.82)

The manifold has been constructed such that it contains two Del Pezzo surfaces which

get interchanged under the orientifold involution

σ : x4 ↔ x5 x6 ↔ x7 . (3.83)

The D7-brane setup will include a U(3) stack wrapping the Del Pezzo surface at x6 = 0

(and its orientifold image at x7 = 0) and one SU(2) stack wrapping an invariant divisor.

To make the quotient we construct the two to one map

(x4, x5, x6, x7) 7→ (s2, s6, s9) = (2x4x5, 2(x5x7 + x4x6), 2x6x7) , (3.84)

where we have called s9 the last coordinates to be consistent with the generic case, where

the U(3) stack was at s9 = 0. The odd combination is given by ξ = x5x7 − x4x6, i.e. the

involution acts as ξ 7→ −ξ. Notice that the new coordinates must satisfy the equation

ξ2 =
s2

6

4
− s2s9 .

In this representation, the type IIB CY threefold is given as two equations in a five-

dimensional toric variety. One of these equations is exactly what we read in (3.29).

The quotient B3 is a hypersurface in the four-dimensional toric variety in table 5,

with the SR ideal {x1x2x3, s2s9s6} (notice that the conifold point s2 = s9 = s6 = 0 is

automatically forbidden by this SR ideal).

In the base manifold B3, both divisors D6 and D7 are projected down to the divisor

D67 whose pull-back is π∗(D67) = D6 + D7. In terms of these, we obtain the following

classes on B3

[s2] = 2D1 +D67 [s6] = D1 +D67 , [s9] = S9 = D67 , (3.85)

where, by abuse of notation, we called D1 also the divisor {x1 = 0} on the base. The

intersection numbers on the base B3 are given by:

D3
1 = 0 , D2

1D67 = 2 , D1D
2
67 = D3

67 = −1 , (3.86)

such that [s2] · [s6] · [s9] = 0 ensuring the absence of the conifold singularity in X3.

In order to fully specify the fibration we have to give the class of S7 = n1D1 + n2D67.

On the type IIB side, this is equivalent to fixing the class of the invariant divisor U to be
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U = (1 + n1)D1 + n2D67. Effectiveness of the fibration restricts the values for n1 and n2

to lie in the following range

−1 ≤ n1 ≤ 2 , 0 ≤ n2 ≤ 2 , (3.87)

in addition to that, one must ensure that the relevant base sections si do not factorize (in

their most generic form allowed by their degrees). In our model (see table 5), the sections

si involved in the fiber equation (3.1), whose associated class is [si] = ni1D1 + ni2D67, do

not factorize if ni1 ≥ ni2 (except for the case ni1 = 0 and ni2 = 1). This leads to a much

stronger relation on S7:

n2 − 1 ≤ n1 ≤ n2 . (3.88)

The four-form flux takes the form (3.25), that in the present example becomes

G4 = a1σ1D1+a2σ1D67 (3.89)

+Λ

(
D2

67(n2−4n1+8)(n2−2)+D2
1

(
n2

1+n1−9+
15

2
n2−3n1n2

)
+(D1+D67)S0+S2

0

)
.

Having a concrete model at hand we can explore the possibility of having a complete

family structure (i.e. all the SM representations have the same number of chiral modes).

For the particular matter configuration we are considering, the complete family structure

is equivalent to the requirement of an anomaly free hypercharge. Written in terms of the

Chern-Simons coefficients, the anomaly freedom condition reads∫
Y4

G4 ∧ σ1 ∧D1 =

∫
Y4

G4 ∧ σ1 ∧D67 = 0 , (3.90)

which is satisfied whenever

a2 =−a1
192−80n1+16n2

1−168n2+48n1n2−12n2
1n2+42n2

2+6n1n
2
2−9n3

2

−252+232n1−80n2
1+12n3

1+66n2−18n1n2−6n2
1n2−18n2

2+9n1n2
2

,

Λ =−a1
124−56n1+12n2

1−30n2−6n1n2+9n2
2

2(−252+232n1−80n2
1+12n3

1+66n2−18n1n2−6n2
1n2−18n2

2+9n1n2
2

.

(3.91)

The number of generations will be given by the following expression:

χ= a1
−104+24n1+80n2

1−40n3
1+8n4

1+136n2−112n1n2+28n2
1n2−12n3

1n2−76n2
2+32n1n

2
2+6n2

1n
2
2+17n3

2−4n1n
3
2−3n4

2

2(−252+232n1−80n2
1+12n3

1+66n2−18n1n2−6n2
1n2−18n2

2+9n1n2
2)

,

(3.92)

where a1 has to be chosen in such a way that χ is integer.14 Eqs. (3.91) have one pole at

(n1, n2) = (2, 2), simply implying that at this stratum the fluxes do not allow for a full

14Eqs. (3.91) and (3.92) seem fairly involved in terms of the integers n1 and n2 so one might ask whether

there are additional conditions imposed on a1 due to the flux quantization condition. In order to answer this

question one must recall that in this work we are only considering the vertical part of the flux which is re-

sponsible for inducing chirality. Adding horizontal parts might allow fluxes to comply with flux quantization

while leaving the chiral structure intact. This is possible only if the Chern Simons coefficients satisfy

Θi j =

∫
X

G4 ∧Di ∧Dj ∈ Z/2 ,

whith Di ∈ H1,1(X). In the case we consider, we checked that this condition is fulfilled.
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n2\n1 -1 0 1 2

0 0 16γ1 − 2γ2

1 − 15
2 γ1 5γ1

2 −6γ1 0

(a)

n2\n1 -1 0 1 2

0 0 −50γ1 + 10γ2

1 − 45
2 γ1 −27γ1 + 4γ2

2 −6γ1 −10γ1

(b)

Table 6. (a) The net number of families as a function of the parameters γ1 and γ2 (F =

γ1D1 + γ2D67) (b) The difference among the chiralities for the split matter curves ∆χ(3,1)1/3 =

χ(3,1)
1/3
(1,−1) − χ(3,1)

1/3
(0,2).

family structure and therefore the hypercharge gauge boson always gets a mass by fluxed

Stückelberg mechanism. One can further work out the number of families as a function of

the parameter a1 to show that it is zero also for (n1, n2) = (−1, 0).

Given that the duality has been shown to work in general, we can approach the generic

case in type IIB, where we have some split matter curves and one flux more, and from there

we obtain the F-theory limiting case in which the λ-flux is turned off.

First let us consider the a very special case: note that when n2 = n1 + 1, the SU(2)

divisor U and the orientifold plane are proportional: U = (1 + n1)DO7. As we mentioned

above, this makes the β- and the λ-fluxes equivalent. We can therefore make λ = 0 and

work out the conditions for a complete family structure in terms of the β- and F -fluxes,

with F = γ1D1 + γ2(D6 +D7). We obtain

γ2|n2=n1+1 =
1

4
(−11 + 5n1)γ1 , β|n2=n1+1 = −(103− 74n1 + 15n2

1)γ1

4(1 + n1)
. (3.93)

Note that as we have conveniently set λ = 0 to remove redundancies, at the strata

n2 = n1 + 1, the type IIB models already match the F-theory ones.

Away from the strata n2 = n1 + 1, the β- and λ-fluxes are inequivalent. Demanding

complete families implies relations for β and λ in terms of γ1 and γ2

λ = −(−12− 8n1 + 4n2
1 − 2n2 − 2n1n2 + 3n2

2)γ1 + (8 + 8n1 − 12n2)γ2

3(1 + n1 − n2)
, (3.94)

β = −(−14 + 2n1 + 3n2)γ1 + (−1 + 3n1 − 3n2)γ2

1 + n1 − n2
. (3.95)

We can use these parameters to compute the number of families, for the cases away from

n2 = n1 + 1, while for n2 = 1 + n1 we will take (3.93) with λ = 0. Additionally, recall

that in type IIB the matter curve (3,1)1/3 splits, therefore we can compute the difference

among the chiralities as well. Both the number of families and the chirality splitting for

the (3,1)1/3 curve are shown in table 6. The type IIB models which have an F-theory

version must have λ = 0. The result matches the type IIB one at the strata n2 = n1 + 1.

Away from those strata, we see from eq. (3.94), that this implies a relation between the

coefficients γ1 and γ2 such that the number of families depend on a single parameter as

expected from eq. (3.91). Written in terms of γ1, the chiralities as well as the splitting

between the families is given in table 7.
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n2\n1 -1 0 1 2

0 0 13γ1

1 − 15
2 γ1 5γ1

2 −6γ1 0

(a)

n2\n1 -1 0 1 2

0 0 −35γ1

1 − 45
2 γ1 −10γ1

2 −6γ1 0

(b)

Table 7. After setting λ = 0 we can get the number of families in the F-theory limit (a) The net

number of families as a function of the parameter γ1. (b) The difference among the chiralities for

the split matter curves ∆χ(3,1)1/3 = χ(3,1)
1/3
(1,−1) − χ(3,1)

1/3
(0,2). Recall that the chiral index for

the field (3,1)1/3 is given as χ(3,1)1/3 = −χ(3,1)
1/3
(1,−1) − χ(3,1)

1/3
(0,2).

It was already stressed that in contrast to SU(5) F-theory GUTs, in this F-theoretic

MSSM-like model the requirement of a having a smooth CY threefold in the weakly coupled

type IIB background does not compromise the presence of the Yukawa couplings. Therefore,

in principle both weak and strong coupling limits are suitable grounds for phenomenology.

There are however, some differences between the F-theory and the type IIB models:

1) In F-theory we have five matter curves, one for each chiral field appearing in the

MSSM. Since the down-type Higgs and lepton doublets are not distinguished in this

model, we expect the Higgses to arise from a vector-like pair living at the (1,2)−1/2

curve. In contrast to that, in the type IIB model we have six curves as a consequence

of the (3,1)1/3 curve splitting into (3,1)
1/3
(1,−1) and (3,1)

1/3
(0,2). Hence, one can dis-

tribute the chiralities among these two curves, such that in the end their chiralities

add up to the net number of families.

2) In type IIB, there are two U(1) symmetries, one of which is geometrically massless

and coincides with that in F-theory. The other U(1) is Stückelberg massive and leaves

behind a global U(1) remnant at the perturbative level. Under this global U(1) the

up type (3,1)
1/6
(0,1) · (1,2)

1/2
(1,0) · (3,1)

−2/3
(−1,−1) and down-type (3,1)

1/6
(0,1) · (1,2)

−1/2
(−1,0) ·

(3,1)
1/3
(1,−1) Yukawa couplings are allowed. However, the down-type Yukawa of the

form (3,1)
1/6
(0,1) · (1,2)

−1/2
(−1,0) · (3,1)

1/3
(0,2) is forbidden. Therefore, if all down-type quarks

are in the representation (3,1)
1/3
(0,2), so that the (3,1)

1/3
(1,−1) curve is depleted of chiral

states, the down-type Yukawa coupling must be suppressed in comparison with the

up-type one. This type of hierarchy is more difficult to see in F-theory at the level

of the codimension-three singularities. It is expected that the hierarchy is manifest

once we compute the Yukawa couplings as wavefunction overlaps [10, 95–105] or from

analyzing the fiber splittings from codimension two to three [40, 41].

3) There is apparently one more flux direction in type IIB. The so-called λ-flux in

type IIB has to be set to zero in order to match the harmonic vertical fluxes in

H
(2,2)
V (Y4) ⊂ H(2,2)(Y4). However if we insist to consider backgrounds with zero vevs

for the charged fields (such that the F-theory brackground can be described by the

resolution of the starting singular fourfold), then this flux cannot be switched on in

type IIB as well.

– 27 –



J
H
E
P
0
3
(
2
0
1
8
)
1
0
7

n2\n1 -1 0 1 2

0 103
4

75
4

1 73
4

33
2

2 31
2 19

Table 8. The quantity χ/24 entering the D3 brane tadpole.

Looking back at table 7, we identify an F-theory model where the hierarchy mentioned

in 3) occurs. Note that for the choice (n1, n2) = (1, 2) the number of families is −6γ1.

Therefore, if the flux quantization as well as the D3-tadpole allow it, for γ1 = ±1/2 we

have a three family model with a perturbative as well as an F-theory description. Note

now that the (3,1)1/3 matter comes all from the χ(3,1)
1/3
(0,2) curve in type IIB. Therefore,

in this case the hierarchy of masses for up-type and down-type quarks is manifest.

The next thing to consider when aiming at realistic models are the flux quantization as

well as the D3-tadpole cancellation. For this particular example, the Euler characteristic

has been computed and it is reported in table 8.

To end the discussion about this particular example we would like to highlight some

of the challenges faced by the models produced in this type of constructions, wich adds to

the general phenomenological discussion provided in [47]:

• The MSSM like models that can be obtained from the toric hypersurface fibration

based on the refelxive polytope F11, lack of any suitable symmetry that could help

to suppress dangerous baryon and lepton number operators. In the absence of a

symmetry that exactly forbbids such couplings, one can only hope that they can be

sufficiently suppressed. At first one can think of using particular base spaces where

the Yukawa points in question are not present. Then the dangerous couplings will

only be induced by non perturbative effects. It is still to be seen if this mechanism

can work.

• It would be important to investigate the possible presence of a T-brane affecting

the Yukawa couplings. The different D7-branes meeting at the Yukawa point can be

thought as the deformation of a single stack: this can be described by giving vev

to a scalar field Φ in the adjoint representation of the enhanced group. When the

D7-brane loci are obtained by a non-abelian vev for Φ we say that a T-branes is

present [60, 106]. These data affect the matter curves and the wave functions and

hence the Yukawa couplings [97, 98, 102, 103, 105]. These type of T-branes may

be described globally in perturbative type IIB (see [107]) and it would be nice to

see their effect on the Yukawa couplings away from the weak coupling limit. In this

respect, our map between the type IIB language and the F-theory one may be useful.

We leave this for future work.

• The curve splitting in the down-type quark sector opens space for the possibility of

a hierarchy between up- and down-type quarks, in the region of moduli space close
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section Line Bundle

u O(H − E1 − E2 + S9 +KB)

v O(H − E2 + S9 − S7)

w O(H − E1)

e1 O(E1)

e2 O(E2)

Figure 3. The polytope F5 and its dual. The table on the right contains the divisor classes of the

coordinates in PF5 .

to weak coupling. This has potentially appealing implications for phenomenology.

However, there are still important issues to address, such as the textures in the

lepton sector or the number of heavy up-type quarks. Regarding the latter issue, the

most immediate quantity to coupute is the number of points supporting the up-type

Yukawa. For the specific example we considered and the stratum n1 = 1, n2 = 2

where the up-down hierarchy is explicit we find that the number of points is given

by [s5][s3][s9] = 2 − 2n2
1 − 3n2 + 2n1n2 + n2

2 = 2. This implies that in this example

there are two heavy up-type families, not one as it should be in phenomenologically

viable model.

• In our setup we have assumed that up- and down-type Higgs multiplets correspond

to a vector-like pair stemming from the same curve as the leptons. We have not

computed such a quantity and we expect that with the help of newly developed

techniques [79] one can also reach the vector-like sector of these models.

4 A U(1) × U(1) F-theory model

In this section we consider the weak coupling limit of a U(1)×U(1) F-theory model which

has been studied in [17, 20, 49, 50, 63, 64].

4.1 F-theory description

4.1.1 Geometric setup

The fiber is cut as a cubic hypersurface in the toric ambient space PF5 corresponding to a

P2 blown up at two points. The polytope F5 as well as its dual are shown in figure 3. The

fiber equation is pF5 = 0, with pF5 given by the following expression:

pF5 =s1e
2
2e

2
1u

3+s2e
2
2e1u

2v+s3e
2
2uv

2+s5e2e
2
1u

2w+s6e2e1uvw+s7e2v
2w+s8e

2
1uw

2+s9e1vw
2.

(4.1)

The sections si have the same degrees as in eq. (3.2), to which we have to add s7 and s8:

s7 s8

S7 K̄B + S9 − S7

. (4.2)
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The Weierstrass equation, written in the form eq. (2.9), has the following expressions for

the coefficients:15

b2 =
s2

6

4
−s5s7 ,

b4 =
1

12

(
s3s

2
6s8+2s3s5s7s8−3s2s6s7s8+6s1s

2
7s8−2s2

3s
2
8

−3s3s5s6s9+s2s
2
6s9+2s2s5s7s9−3s1s6s7s9+2s2s3s8s9−2s2

2s
2
9+6s1s3s

2
9

)
,

(4.3)

b6 =
1

108

(
3s2

3s
2
6s

2
8+24s2

3s5s7s
2
8−18s2s3s6s7s

2
8+27s2

2s
2
7s

2
8

−72s1s3s
2
7s

2
8−8s3

3s
3
8−18s2

3s5s6s8s9+6s2s3s
2
6s8s9−6s2s3s5s7s8s9

−18s2
2s6s7s8s9+90s1s3s6s7s8s9−18s1s2s

2
7s8s9+12s2s

2
3s

2
8s9+27s2

3s
2
5s

2
9

−18s2s3s5s6s
2
9+3s2

2s
2
6s

2
9+24s2

2s5s7s
2
9−54s1s3s5s7s

2
9−18s1s2s6s7s

2
9

+27s2
1s

2
7s

2
9+12s2

2s3s8s
2
9−72s1s

2
3s8s

2
9−8s3

2s
3
9+36s1s2s3s

3
9

)
.

(4.4)

The fiber exhibits three inequivalent rational points which are related to the three sections

of the elliptic fibration. The first is the zero section at

S0 : [x : y : z] = [1 : 1 : 0] , (4.5)

while the others are

S1 : [x : y : z] =

[
1

3
(2s3s8 − s2s9) :

1

2
(s3s6s8 − s2s7s8 − s3s5s9 + s1s7s9) : 1

]
(4.6)

and

S2 : [x : y : z] =

[
s7

(
s7s

2
8−s6s8s9+s5s9

)
+

1

3
s2

9 (2s3s8−s2s9) : (4.7)

1

2
(2s7s8−s6s9)

(
s7

(
s7s

2
8−s6s8s9+s5s9

)
+s3s8s

2
9

)
+

1

2
s4

9(s3s5+s1s7) : s9

]
.

We notice that the last one is a rational section. Having three inequivalent sections, the

Mordell-Weil group of the fibrations is two-dimensional. The number of massless U(1)

gauge bosons is then two. The corresponding divisors are

σ1 = (S1 − S0 − K̄B) , (4.8)

σ2 = (S2 − S0 − K̄B − S9) . (4.9)

Looking at the Weierstrass model, one can confirm that the fibration is not singular at

codimension-one. Hence there are no non-Abelian gauge symmetries in this model. In-

stead, at codimension-two there are six loci along which the fiber degenerates to an I2.

15Of course other choices are possible. We will see in the following that this choice is the proper one to

define a weak coupling limit that gives the same 7-brane setup in F-theory and in type IIB.
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Representation Locus

1(1,−1) V (I(1)) := {s3 = s7 = 0}

1(1,0)

V (I(2)) := {s2s
2
7 + s2

3s9 − s3s6s7 = 0

s5s3s7 − s2
3s8 − s2

7s1 = 0}\V (I(1))

1(−1,−2) V (I(3)) := {s8 = s9 = 0}

1(−1,−1)

V (I(4)) := {s2s8s9 − s3s
2
8 − s2

9s1 = 0

s5s
2
9 − s6s8s9 + s2

8s7 = 0}\(V (I(3))

1(0,2) V (I(5)) := {s9 = s7 = 0}

1(0,1)

V (I(6)) := {s1s
4
9s

2
7 + (s3s

2
9 + s7

×(−s6s9 + s8s7))(s3s8s
2
9 + s7

×(−s6s8s9 + s2
8s7 + s2

9s5)) = 0

s2s
3
9s

2
7 + s2

3s
4
9 − s3s6s

3
9s7

−s3
7(−s6s8s9 + s2

8s7 + s2
9s5) = 0}

\(V (I(1)) ∪ V (I(3)) ∪ V (I(5)))

Table 9. Charged singlets under U(1)
2

with the expressions for their corresponding codimension-

two loci.

Therefore we have six charged16 superfields distinguished by their charges under the two

U(1) symmetries. Their corresponding charges and associated loci are summarized in

table 9.

4.1.2 Fluxes and chiral matter

Following a similar method as in section 3.1.2 we obtain the independent flux directions

in H
(2,2)
V (X). In this case the fibral divisors are S0, S1 and S2, while among the vertical

divisors we have the special ones {K̄B,S7,S9}, as in the previous case. The most general

flux expression consistent with the vanishing of the Chern-Simons terms of the form Θ0α

Θαβ is given by

G4 = F1 ∧ σ1 + F2 ∧ σ2 + Λ
(
S2

0 + [K−1
B ](−[K−1

B ] + S2) + S9(−S7 + S9)
)

(4.10)

with F1 and F2 being generic vertical divisors. The chiralities for the singlet fields under

this flux are reported in table 10.

16In literature, these fields are called singlets, to make it clear that they are not charged under a non-

Abelian gauge symmetry.
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Representation G4 = F1 ∧ σ1 + F2 ∧ σ2

G4 = Λ(S2
0 + K̄B(−K̄B + S2)

+S9(−S7 + S9))

1(1,−1) (F1 −F2)S7(K̄B + S7 − S9) −ΛK̄BS7(K̄B + S7 − S9)

1(1,0)

F1(6K̄2
B + K̄B(4S7 − 5S9)

−2S2
7 + S7S9 + S2

9 )
−ΛS7S9(K̄B − S7 + S9)

1(−1,−2) −(F1 + 2F2)S9(K̄B − S7 + S9)
−ΛS9(2K̄B + S7 − 2S9)

×(K̄B − S7 + S9)

1(−1,−1)

−(F1 + F2)(6K̄2
B + K̄B(−5S7 + 4S9)

+S2
7 + S7S9 − 2S2

9 )

Λ(−6K̄3
B + 2(S7 − S9)S2

9 + K̄2
B(5S7 + 2S9)

−K̄B(S2
7 + 7S7S9 − 6S2

9 ))

1(0,2) 2F2S7S9 ΛS7(K̄B + S7 − S9)S9

1(0,1)

F2(6K̄2
B + K̄B(4S7 + 4S9)

−2S2
7 − 2S2

9 )

2Λ(3K̄2
B − K̄BS7 + 2K̄BS9 − S2

9 )

×(K̄B + S7 − S9)

Table 10. Charged matter representations under U(1)2 and corresponding codimension-two fibers

of XF5 .

4.2 The weak coupling limit

In order to take the weak coupling limit we must first specify the ε scalings of the sections

si. A choice that leads to the same setup in type IIB is

s8 → ε1s8, s9 → ε1s9, si → ε0si (i 6= 8, 9) . (4.11)

In the limit ε→ 0, the D7-brane locus is ∆E = 0, with

∆E = −1

4
s7 ·
[
(s3s5 − s1s7)2 − (s3s6 − s2s7)(s2s5 − s1s6)

]
·
[
s7s

2
8 − s6s8s9 + s5s

2
9

]
. (4.12)

Given the above expression for b2, the double cover Calabi-Yau threefold is given by

ξ2 =
s2

6

4
− s5s7 . (4.13)

In order to deal only with smooth CY threefold, we restrict the base space B3 to those

spaces for which the conifold point ξ = s6 = s5 = s7 = 0 is absent.

4.2.1 D7-brane setup

To understand how many irreducible D7-branes we have, we need to intersect the three

factors in eq. (4.12) with the Calabi-Yau equation (4.13). As we will see shortly, each of

the components is going to split in such a way that in the type IIB model we have three

U(1) gauge symmetries:

• U(1)1 stack: consider first the locus {s7 = 0}. One can see that in the Calabi-Yau

it splits into the following components:

X ≡
{
s7 = 0, ξ − 1

2
s6 = 0

}
and X̃ ≡

{
s7 = 0, ξ +

1

2
s6 = 0

}
. (4.14)
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These two divisors are in different homology classes and therefore the U(1) symmetry

resulting from one brane wrapping X and its image wrapping X̃ is geometrically

massive.

• U(1)2 stack: let us now consider the second factor in eq. (4.12),

∆rem,1
E = (s3s5 − s1s7)2 − (s3s6 − s2s7)(s2s5 − s1s6) . (4.15)

Once intersected with the Calabi-Yau equation, this locus decomposes into two non-

complete intersection four-cycles, one of which is given by the following expression

Y ≡
{(
ξ − s6

2

)
(s3s6 − s2s7) + s7(s3s5 − s1s7) , (4.16)(

ξ +
s6

2

)
(s2s5 − s1s6)− s5(s3s5 − s1s7) , (4.17)(

ξ − s6

2

)
(s3s5 − s1s7) + s7(s2s5 − s1s6) , eq. (4.13)

}
, (4.18)

the other Ỹ = σ∗Y is obtained from (4.16) upon exchange ξ 7→ −ξ. The divisors

Y and Ỹ are in different homology classes (as we will show below). Hence, the D7

branes wrapping such divisors give rise to a massive U(1) symmetry.

• U(1)3 stack: the remaining factor in eq. (4.12) reads

∆rem,2
E = s7s

2
8 − s6s8s9 + s5s

2
9 . (4.19)

When intersected with the Calabi-Yau equation it splits, giving rise to two divisors

in different homology classes and defined by the following set of non-transversely

intersecting polynomials

Z ≡
{
s7s8 − s9

(
ξ +

s6

2

)
, s5s9 + s8

(
ξ − s6

2

)
, eq. (4.13)

}
, (4.20)

Z̃ ≡
{
s7s8 + s9

(
ξ − s6

2

)
, s5s9 − s8

(
ξ +

s6

2

)
, eq. (4.13)

}
. (4.21)

Again, the associated U(1) is massive.

Let us now discuss some of the relations among the divisor classes we have just de-

scribed. Note first that in the Calabi-Yau the locus s7∆rem,2
E = 0 splits as

s7∆rem,1
E |X3 = s2

7s
2
8+4s7s9(−s6s8+s5s9) =

(
s7s8−s9

(
ξ+

s6

2

))(
s7s8+s9

(
ξ− s6

2

))
. (4.22)

Both components are in the class 4DO7− 1
2(Y + Ỹ ), where once again DO7 = [ξ] is the class

of the O7 plane. From eqs. (4.14) and (4.16) one also sees that the first factor must be in

the class Z + X̃, while the second must live in Z̃ + X. By using this and the D7-tadpole

cancellation condition 8DO7 = X+ + Y+ + Z+ (where we have rewritten the divisors in

terms of orientifold even and odd combinations, i.e. D± = D ± D̃), we obtain

Z = 4DO7 −
1

2
(Y + Ỹ )− X̃ , Z̃ = σ∗Z . (4.23)
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Next lets consider the polynomial s2
7∆rem,1

E , whose vanishing produces a divisor in the

class 2(X + X̃) + (Y + Ỹ ). In the double cover Calabi-Yau thereefold, this polynomial

factorizes as

s2
7∆rem,1

E |X3 =
((
ξ − s6

2

)
(s3s6 − s2s7) + s7(s3s5 − s1s7)

)
×
((
ξ +

s6

2

)
(s3s6 − s2s7)− s7(s3s5 − s1s7)

)
. (4.24)

Once again both factors are in the same homology. The homology class of the first monomial

is in the class 2X + Y , while the second is in 2X̃ + Ỹ , therefore implying

Y− = Y − Ỹ = −2X− . (4.25)

Hence we have three unrelated even divisors DO7, X+ and Y+ and one odd divisor X−.

The even ones are to be related to the base divisors π∗(K̄B), π∗(S7) and π∗(S9). The first

obvious identifications are

π∗(K̄B) = DO7 , π∗(S7) = X+ . (4.26)

As regard Y+, note that Y+ = [∆rem,1
E ] = 2(π∗(S3) + π∗(S5)). Using table (3.2) to write

these classes in terms of S7 and S9 we find

π∗(S9) = 3DO7 −
1

2
Y+ . (4.27)

Similarly as in the previous section, we have the relations DO7X = DO7X̃ = XX̃, imply-

ing the absence of the conifold singularity on the type IIB side. These relations can be

rewritten as

2DO7X+ = X2
+ −X2

− , DO7X− = 0 . (4.28)

Even though we have a set of three massive U(1)’s, there are however two linear

combinations of the three U(1) generators that lead to massless U(1) gauge symmetries as

expected from the F-theory side. As we have just shown, the relation between the odd

part of the D7-brane divisors is X− = −1
2Y− = Z−. This implies that there is only one

combination of the D-brane U(1)’s that eats the odd axion and becomes massive. The

orthogonal combinations remain massless. The two massless U(1) generators are given by

Q1 =
1

2
(QX +QY +QZ) and Q2 = −QX +QZ . (4.29)

4.2.2 Charged matter

The next step will be to obtain the corresponding matter living at the brane intersections.

The schematics of the intersections is given in figure 4. The corresponding intersections

are following, where the sub-indices are the charges (QX , QY , QZ) under massive U(1)’s,

while the upper indices are the charges (Q1, Q2) under the massless U(1)’s (reported for

later use):
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X̃ X

Ỹ Y
Z̃ Z

O7

Figure 4. Depiction of the three U(1) brane stacks in the presence of the orientifold plane O7.

• XX̃ :
��
��1

(1,−2)
(2,0,0) . The would-be singlet is localized at the vanishing of the following ideal

{ξ, s7, s6} . (4.30)

However, this coincides with the O7 plane, where no symmetric matter is allowed.

Due to that, this field is not part of the spectrum.

• X̃Y : 1
(1,−1)
(1,1,0). This state sits at the vanishing of the ideal{

s7, ξ +
s6

2
, s3

}
. (4.31)

• X̃Z : 1
(1,0)
(1,0,1). The singlet is located at the vanishing of{

s7, ξ +
s6

2
, s5s9 − s6s8

}
. (4.32)

• XY : 1
(0,1)
(−1,1,0). This state sits at the vanishing of the ideal{

s7, ξ −
s6

2
, s3s

2
5 − s2s5s6 + s1s

2
6

}
. (4.33)

• XZ : 1
(0,2)
(−1,0,1). This state sits at the vanishing of the ideal{

s7, ξ −
s6

2
, s9

}
. (4.34)

• Y Ỹ : 1
(1,0)
(0,2,0). This state sits at the vanishing of the ideal

{s3s5 − s1s7, s2s5 − s1s6, s3s6 − s2s7, eq. (4.13)} . (4.35)
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• Y Z : 1
(1,1)
(0,1,1). This state sits at the vanishing locus of the union of the ideals for Y

and Z, which occurs to be prime.

• Ỹ Z : 1
(0,1)
(0,−1,1). This state sits at the vanishing of the ideal:

{2s7s8−s6s9+2s9ξ,s6s8−2s5s9+2s8ξ, 2s3s6s8+2ξs2s9−2s3s5s9−s2s6s9+2s1s7s9,

s3s
2
8−s2s8s9+s1s

2
9,2s3s5s8−2s2s5s9+s1s6s9+2ξs1s9, 2ξs3s6−s3s26−2ξs2s7+2s3s5s7+

+s2s6s7−2s1s
2
7,2ξs3s5−s3s5s6−2ξs1s7+2s2s5s7−s1s6s7,

2ξs2s5−2s3s
2
5−2ξs1s6+s2s5s6−s1s26+2s1s5s7, eq. (4.13)} . (4.36)

• ZZ̃ : 1
(1,2)
(0,0,2). The ideal associated to this state is given by

{s8, s9, eq. (4.13)} . (4.37)

Let us focus on the charges of these fields under the two massless U(1) generators (4.29).

As in the SM example of section 3, there are fields that have different charges under the

three D7-brane massive U(1)’s, but have the same charges under the two massless U(1)’s.

Correspondingly if one goes away from the weak coupling limit (i.e. take ε finite), the

corresponding matter curves join: there is one matter curve for each pair of massless

charges. Said differently, we can look back at the F-theory table 9 and consider the ε

scaling for the matter loci, taking only the leading order in ε for the various ideals. One

notices that some curves split into two irreducible loci. The splitting occurs for the loci

associated to the singlets 1(1,0) and 1(0,1). The correspondence for the matter curves works

as follows

Type IIB 1(1,1,0) 1(1,0,1) 1(0,2,0) 1(−1,0,1) 1(0,1,1) 1(0,0,2) 1(−1,1,0) 1(0,−1,1)

F-theory 1(1,−1) 1(1,0) 1(0,2) 1(1,1) 1(1,2) 1(0,1)

,

where for the type IIB matter we reported only the massive U(1) charges.

To make the phenomenon clearer, let us consider one of the splitting. Take the curve

1(1,0) in F-theory. Its locus is given by the following ideal (it is not a complete intersection,

as it can be inferred from the more implicit form in table 9):

V (I(2)) =
{
s3s6s8 − s2s7s8 − s3s5s9 + s1s7s9, s3s6s7 − s2s

2
7 − s2

3s9,

s3s5s7 − s1s
2
7 − s2

3s8, s2s5s7 − s1s6s7 − s2s3s8 + s1s3s9,

s2s5s6s8 − s1s
2
6s8 − s2

2s
2
8 − s2s

2
5s9 + s1s5s6s9 + 2 s1s2s8s9 − s2

1s
2
9

}
.

At leading order in ε (remember that only s8 and s9 scales with ε) one has

V (I(2))
w.c. = {−s3(s5s9 − s6s8) + s7(s1s9 − s2s8), (s3s6 − s2s7)s7,

(s3s5 − s1s7)s7, (s2s5 − s1s6)s7, −(s2s5 − s1s6)(s5s9 − s6s8)} .

The vanishing locus associated with this ideal is then the union of the loci given by the

ideals17

{s7, s5s9 − s6s8} and {s3s5 − s1s7, s2s5 − s1s6, s3s6 − s2s7} .
17To make it manifest, one can notice that the first equation of V (I(2))

w.c. can be rewritten as s8(s3s6 −
s2s7)− s9(s3s5 − s1s7).
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The last one further splits on the CY threefold. We recognize the loci of the curves 1(1,0,1)

and 1(0,2,0) in type IIB.

4.2.3 Fluxes and chiralities

Finding all admisible gauge fluxes amounts to finding all solutions for the D5-tadpole

cancellation condition, that in this case takes the form

0 = X−F
X
+ + Y−F

Y
+ + Z−F

Z
+X+ + FX− + Y+F

Y
− + Z− + FZ− (4.38)

= X−(FX+ − 2F Y+ + FZ+ ) +X+(FX− − FZ− ) + Y+(F Y− − FZ− ) . (4.39)

We find three types of independent solutions to this equation:

• D5-tadpole canceling even fluxes are

(FX+ , F Y+ , F
Z
+ )1 =

1

2
(1, 1, 1)F1 , (4.40)

(FX+ , F Y+ , F
Z
+ )2 = (−1, 0, 1)F2 , (4.41)

(FX+ , F Y+ , F
Z
+ )λ = λ(DO7, 0, 0) . (4.42)

The first two are the fluxes along the massless U(1) generators, with F1, F2 ∈
H

(1,1)
+ (X3), and the last one is a flux for a massive U(1), with λ a suitable ratio-

nal number in agreement with flux quantization.

• As regard the orientifold odd sector we only get the general solution FX− = F Y− = FZ−
which corresponds to a shift in the B-field.

• There is also a mixed flux solution

(FZ+ , F
Y
− )α = α(Y+,−X−) , (4.43)

where again α is a rational number compatible with flux quantization.

The matching to the vertical fluxes in F-theory proceeds as follows: the fluxes F1 and F2

are related to F1 and F2 in the same way as in section 3.2, while the Λ flux requires taking

a linear combination of F1, F2, λ and α fluxes. If we take

F1 = 0 , F2 = −
(

2DO7 −
1

2
X+ −

1

2
Y+

)
Λ , λ = −2Λ , 2α = Λ , (4.44)

the FI terms, D3-tadpoles as well as the chiral indices induced by the Λ flux match the result

in the type IIB setup. Hence, one concludes that the remaining type IIB flux combination

cannot be among the harmonic vertical fluxes in F-theory.

5 SU(3) × SU(2) × U(1)2 model

A variation of the F5 polytope model which allows the incorporation of non-Abelian sym-

metries and matter has been constructed in refs. [49, 50], for standard model like theories
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with one extra U(1). Their approach consists in modifying the fibration by toric construc-

tion known as a top [108, 109], and elaborates on the classification of all possible tops for

fibers cut as hypersurfaces in any of the sixteen 2D toric ambient spaces [110]. There are

only five inequivalent SU(3) × SU(2) tops of dP2, out of which we focus on the one that

has been studied more widely, denoted as I ×A in [49].

5.1 F-theory description

5.1.1 Geometric setup

Inducing non-Abelian gauge enhancements first requires specifying additional base divisors

along which the fiber degenerates. In this case we define W2 ={w2 =0} and W3 ={w3 =0}
as the base divisors where the SU(2) and SU(3) gauge symmetries live.

The top construction automatically provides the (toric) resolution divisors that make

the fiber smooth over w2 = 0 and w3 = 0 as well. In the hypersurface equation, the presence

of additional divisors is manifest by the presence of additional blow up coordinates f0, f1

and g0, g1 and g2 for SU(2) and SU(3), respectively. The idea is to refine the sections si
of section 4 such that f, g,∆ have the right vanishing orders for w1 and w2; they will then

be of the form si = s̃if
l0
0 f

l1
1 g

m0
0 gm1

1 gm2
2 , with suitable integers lj , mj .

For the top model I×A of [49, 50], the fiber equation is given by pI×A
F5

= 0, with

pI×A
F5

= s1e
2
1e

2
2f0g0g

2
1u

3 + s2e1e
2
2f0g0g1u

2v + s3e
2
2f0g0uv

2 + s5e
2
1e2g1u

2w

+ s6e1e2uvw + s7e2g0g2v
2w + s8e

2
1f1g1g2uw

2 + s9e1f1g2vw
2 ,

(5.1)

where by abuse of notation we have written si instead of s̃i. As already mentioned, for

each of the top coordinates fi, gi there is a toric divisor corresponding to a P1 fibered

over either W2 or W3, in such a way that the different fiber P1’s intersect according to

the affine Dynkin diagram of the Lie algebra under consideration. Therefore the divisors

classes satisfy

π̂∗(W2) = [f0] + [f1] , π̂∗(W3) = [g0] + [g1] + [g2] , (5.2)

where π̂∗(W2) and π̂∗(W3) are divisors in the Calabi-Yau fourfold Y4 obtained by pulling

back the base divisors W2 and W3 by the projection map π̂ : Y4 → B3. As done in the

previous sections, we will use W2 and W3 to denote the pull-back to the fourfold as well as

base divisors. The pictures of the top as well as the divisor classes for fiber ambient space

and top coordinates are given in figure 5.

In order for pI×A
F5

to give a Calabi-Yau after introducing the top, some of the divisor

classes associated with the si have to be modified:

s1 s2 s3 s7

3K̄B − S7 − S9 −W2 −W3 2K̄B − S9 −W2 −W3 K̄B + S7 − S9 −W2 −W3 S7−W3

.

The inequivalent sections of the elliptic fibration can once again been represented by the

divisors S0 = [e2], S1 = [e1] and S2 = [u]. The exceptional divisors are DSU(2) = F1,

D
SU(3)
1 = G1 and D

SU(3)
2 = G2. Due to the presence of these, the Shioda maps have to
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section Line Bundle

u O(H − E1 − E2 + S9 +KB)

v O(H − E2 +G1 + S9 − S7)

w O(H − E1 − F1 −G2)

e1 O(E1)

e2 O(E2)

f0 f1 g0 g1 g2

W2 − F1 F1 W3 −G1 −G2 G1 G2

Figure 5. The tops I and A used to engineer the non Abelian gauge symmetry SU(3) × SU(2)

over F5 [49, 50]. The table contains the divisor classes of the PF11 ambient space as well as the top

coordinates. Note that some divisor classes for the ambient space coordinates get modified in the

presence of the top.

be modified such that the U(1) generators are orthogonal to the Cartan generators of the

non-Abelian gauge symmetry:

σ1 = S1 − S0 − K̄B +
1

2
DSU(2) +

1

3

(
2D

SU(3)
1 +D

SU(3)
2

)
, (5.3)

σ2 = S2 − S0 − K̄B − S9 +
1

3

(
2D

SU(3)
1 +D

SU(3)
2

)
. (5.4)

After mapping the fiber equation to the Weierstrass equation, one can work out the bi’s

sections:

b2 =
1

4
s2

6 − s5s7w3 , (5.5)

b4 = − 1

12
w2w3(−s3s

2
6s8 + 3s3s5s6s9 − s2s

2
6s9 − 2s3s5s7s8w3 + 3s2s6s7s8w3

− 2s2s5s7s9w3 + 3s1s6s7s9w3 + 2s2
3s

2
8w2w3 − 2s2s3s8s9w2w3

+ 2s2
2s

2
9w2w3 − 6s1s3s

2
9w2w3 − 6s1s

2
7s8w

2
3) ,

(5.6)

b6 = − 1

108
w2

2w
2
3(−3s2

3s
2
6s

2
8 + 18s2

3s5s6s8s9 − 6s2s3s
2
6s8s9 − 27s2

3s
2
5s

2
9 + 18s2s3s5s6s

2
9

− 3s2
2s

2
6s

2
9 − 24s2

3s5s7s
2
8w3 + 18s2s3s6s7s

2
8w3 + 6s2s3s5s7s8s9w3

+ 18s2
2s6s7s8s9w3 − 90s1s3s6s7s8s9w3 − 24s2

2s5s7s
2
9w3 + 54s1s3s5s7s

2
9w3

+ 18s1s2s6s7s
2
9w3 + 8s3

3s
3
8w2w3 − 12s2s

2
3s

2
8s9w2w3 − 12s2

2s3s8s
2
9w2w3

+ 72s1s
2
3s8s

2
9w2w3 + 8s3

2s
3
9w2w3 − 36s1s2s3s

3
9w2w3 − 27s2

2s
2
7s

2
8w

2
3

+ 72s1s3s
2
7s

2
8w

2
3 + 18s1s2s

2
7s8s9w

2
3 − 27s2

1s
2
7s

2
9w

2
3) ,

(5.7)

which can be used to construct f , g and the discriminant. After doing so, one finds that at

codimension-one there are indeed two singularities, one over the locus w2 = 0, exhibiting

the right vanishing orders to coincide with an A1 singularity. The other lives at w3 = 0 and

corresponds to an A2 singularity. At codimension-two we find several loci corresponding

to the location of charged matter. They are summarized in table 11, together with the

representations for the matter associated with those singularities. Note that the singlet
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Representation Locus

(3,2)( 1
6
,− 1

3
) {w3 = w2 = 0}

(3,1)(− 2
3
, 1
3

) {w3 = s3 = 0}

(3,1)( 1
3
, 4
3

) {w3 = s9 = 0}

(3,1)( 1
3
,− 2

3
) {w3 = −s6s7 + s3s9w2 = 0}

(3,1)(− 2
3
,− 2

3
) {w3 = −s6s8 + s5s9 = 0}

(3,1)( 1
3
, 1
3

) {w3 = s3s
2
5 − s2s5s6 + s1s

2
6 = 0}

(1,2)( 1
2
,−1) {w2 = s7 = 0}

(1,2)( 1
2
,1) {w2 = −s6s8s9 + s5s

2
9 + s7s

2
8w3 = 0}

(1,2)( 1
2
,0) {w2 = s2

3s
2
5 − s2s3s5s6 + s1s3s

2
6 + s2

2s5s7w3 − 2s1s3s5s7w3 − s1s2s6s7w3 + s2
1s

2
7w

2
3 = 0}

1(1,−1) V (I(1)) := {s3 = s7 = 0}

1(1,0)

V (I(2)) := {−s3s6s7 + s2
3s9w2 + s2s

2
7w3 = 0 ,

s3s5s7 − s2
3s8w2 − s1s

2
7w3 = 0}\V (I(1))

1(−1,−2) V (I(3)) := {s8 = s9 = 0}

1(−1,−1)

V (I(4)) := {s2s8s9 − s3s
2
8 − s2

9s1 = 0

s5s
2
9 − s6s8s9 + s2

8s7w3 = 0}\(V (I(3))

1(0,2) V (I(5)) := {s9 = s7 = 0}

1(0,1)

V (I(6)) := {s2
9(−s6s7 + s3s9w2)(−s6s7s8 + s5s7s9 + s3s8s9w2)

+s2
7s9(−2s6s7s

2
8 + s5s7s8s9 + 2s3s

2
8s9w2 + s1s

3
9w2)w3 + s4

7s
3
8w

2
3 = 0 ,

s3s
3
9w2(−s6s7 + s3s9w2) + s2

7s9(s6s7s8 + s9(−s5s7 + s2s9w2))w3 − s4
7s

2
8w

2
3 = 0}

\(V (I(1)) ∪ V (I(3)) ∪ V (I(5)))

Table 11. Charged matter under SU(3)×SU(2)×U(1)
2

with the expressions for their corresponding

codimension-two loci.

sector, which was already discussed in the previous sections suffers from slight modifications

when the top is introduced. In particular, note that the sections w1 and w2 enter into the

definition of the singlet curves that can not be written as complete intersections.

In comparison to the minimal standard model of section 3, the presence of the ad-

ditional U(1) symmetry gives many more matter representations which could be of great

use for model building. For example, for the model of section 3, there is only one doublet

curve, hence the Higgs fields in that model must be vector-like. Here instead, one has three

doublets, distinguished by their U(1) charges. Hence there is in principle the possibility

to put leptons, up-type and down-type Higgses in different curves. For a thorough phe-

nomenological discussion of the features of this model such as how the fluxes are tuned or

how the Yukawa couplings are generated, the reader is refered to refs. [49] and [50].

5.1.2 Fluxes and chiral matter

After computing the quartic intersections in the Calabi-Yau fourfold one can determine the

inequivalent vertical flux directions. The G4 fluxes in this model were originally computed
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in [50]. Here we have followed a slightly different notation in order to keep a more uniform

structure throughout the paper.

As expected, we obtain the usual gauge flux directions along the U(1) generators

GF1
4 = σ1 ∧ F1 , GF2

4 = σ1 ∧ F2 , (5.8)

as well as a version of the Λ-flux,

GΛ
4 = Λ

[
S2

0 + [K−1
B ](−[K−1

B ] + S2) + S9(−S7 + S9) +
1

3
[K−1

B ](2G1 +G2)

]
. (5.9)

This expression coincides with the Λ-fux obtained in the previous section (see eq. (4.10))

if we set G1 and G2 to zero.

Additionally to the previous fluxes, we obtain four extra inequivalent flux directions

which are due to the tunning of the complex structure in the presence of the top:

GA1
4 =

1

2
A1

[
2F 2

1 −2(G1+G2−2(−[K−1
B ]+S0))W2+F1(−2(−[K−1

B ]−S9+W2)+W3)
]
,

GA2
4 =

1

6
A2

[
2(2G1+G2−3([K−1

B ]+S0))W2+3F1(2S1−S7+W2+W3)
]
,

GA3
4 =

1

6
A3

[
6G2

1+G1(6[K−1
B ]−6S7+4S9−8W3)+2G2(S9−2W3)−3(F1−4([K−1

B ]+S0))W3

]
,

GA4
4 =

1

6
A4

[
−2G2([K−1

B ]+S7−2W3)+3(F1−2([K−1
B ]+S0))W3+2G1(3G2−2[K−1

B ]+S7+W3)
]
.

This coincides with the observation of [50] that in this model there are five extra flux

directions in addition to the massless U(1) G4 fluxes. Our flux expressions can be matched

to those found in [50] up to SR-ideal components. The chiralities can be straightforwardly

computed by using the curve representatives provided in [50].

5.2 The weak coupling limit

One can see that the weak coupling limit remains the same as in the F5 model, and that

b2, b4 and b6 scale accordingly with ε provided s8 → εs8 and s9 → εs9, while all other base

sections remain independen of ε. The weak discriminant then reads

∆E =−1

4
w2

2 ·w3
3 ·s7 ·

[
(s3s5−s1s7w3)2−(s3s6−s2s7w3)(s2s5−s1s6)

]
·
[
s7s

2
8w3−s6s8s9+s5s

2
9

]
,

(5.10)

from which we can read out the U(3) and SU(2) factors as well as the three U(1) factors

which change just slightly in comparison with eq. (4.12). The Calabi-Yau Equation in this

case reads

ξ2 =
s2

6

4
− s5s7w3 . (5.11)

Note that in this case, we must not forbid one but three conifold points, namely: ξ = s6 =

s5 = s7 = 0, ξ = s6 = s7 = w3 = 0 and ξ = s6 = s5 = w3 = 0. Moreover the CY threefold

has now h1,1
− = 2 (and h1,1

+ = h1,1(B3) ≥ 2): the two independent loci s5 = 0 and s7 = 0

both split into two divisors mapped to each other by the orientifold involution ξ 7→ −ξ,
and in different homology classes.
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X̃ X

U

O7Ỹ Y

W̃ W

ZZ

Figure 6. Schematics of the brane setup for the SU(3) × SU(2)× U(1)× U(1) model. The SU(2)

brane lies on a symplectic cycle. The two U(1) symmetries in F-theory result from two geometrically

massless combinations out of three U(1) symmetries in type IIB.

5.2.1 D7 brane setup

After the introduction of w2 and w3, the new brane stacks that one obtains are (see figure 6)

• U(3) stack: in the Calabi-Yau, the locus {w3 = 0} splits into the following

components:

W ≡
{
w3 = 0, ξ − 1

2
s6 = 0

}
and W̃ ≡

{
w3 = 0, ξ +

1

2
s6 = 0

}
. (5.12)

The U(3) symmetry results from wrapping three D7 branes on each of these divisors.

Since W and W̃ are in different homology classes, the U(1) ⊂ U(3) symmetry is

geometrically massive.

• SU(2) stack: there are two D7-branes wrapping the invariant irreducible divisor

U ≡ {w2 = 0}. The two branes are image to each other and support an Sp(()1) ∼=
SU(()2) gauge symmetry. Once again, the diagonal U(1) is projected out by the

orienfold action, but there remains the possibility of having an orientifold-odd gauge

flux with along the divisor U .

In addition we have again the three U(1) divisors inherited from F5, which however suffer

from slight modifications in the presence of the top.
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• U(1)1 stack: over the Calabi-Yau, the locus {s7 = 0} splits into two components:

X ≡
{
s7 = 0, ξ − 1

2
s6 = 0

}
and X̃ ≡

{
s7 = 0, ξ +

1

2
s6 = 0

}
. (5.13)

• U(1)2 stack: let us now consider the following factor in eq. (5.10),

∆rem,1
E = (s3s5 − s1s7w3)2 − (s3s6 − s2s7w3)(s2s5 − s1s6) . (5.14)

The ideal generated by ∆rem,1
E together with the Calabi-Yau equation decomposes into

two prime, non complete intersection ideals, one of which is given by the following

expression

Y ≡
{(
ξ − s6

2

)
(s3s6 − s2s7w3) + s7w3(s3s5 − s1s7w3) , (5.15)(

ξ +
s6

2

)
(s2s5 − s1s6)− s5(s3s5 − s1s7w3) , (5.16)(

ξ − s6

2

)
(s3s5 − s1s7w3) + s7w3(s2s5 − s1s6) , eq. (5.11)

}
, (5.17)

while its image Ỹ = σ∗Y is obtained by changing ξ 7→ −ξ in eq. (5.15).

• U(1)3 stack: the remaining locus to be analyzed reads

∆rem,2
E = s7w3s

2
8 − s6s8s9 + s5s

2
9 , (5.18)

that in the Calabi-Yau splits into two components:

Z ≡ {2s7w3s8 − s6s9 − 2s9ξ, s6s8 − 2s5s9 − 2s8ξ, eq. (5.11)} , (5.19)

Z̃ ≡ {2s7w3s8 − s6s9 + 2s9ξ, s6s8 − 2s5s9 + 2s8ξ, eq. (5.11)} . (5.20)

Note that in all cases the discriminant components split into divisors in the Calabi-Yau

which are in different homology classes. Therefore they receive a geometrical mass and

therefore, any massless U(1) is going to be a linear combination of these. In particular, the

massless generators are

Q1 =
1

2
(
1

3
QW +QX +QY +QZ) and Q2 = −1

3
QW −QX +QZ , (5.21)

in terms of the massive U(1) generators QW , QX , QY , QZ .

For this case as well, one can check that some homology relations are satisfied. First

note that one can multiply eq. (5.18) by s7w3 to obtain

s7w3∆rem,1
E |X3 =

(
s7w3s8 − s9

(
ξ +

s6

2

))(
s7w3s8 + s9

(
ξ − s6

2

))
. (5.22)

Note that both of these factors must be in the class 4DO7− (W + W̃ )−U − 1
2(Y + Ỹ ), and

that the first is in the class Z + X̃ + W̃ , from which we can deduce the following relation

Z = 4DO7 − (W + 2W̃ )− U − X̃ − 1

2
(Y + Ỹ ) , Z̃ = σ∗Z , (5.23)
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in agreement with the D7 tadpole 8DO7 = 3W+ + 2U + X+ + Y+ + Z+, where we have

written everything in terms of orientifold even and odd divisors.

In a similar fashion we can multiply s2
7w

2
3 with ∆rem,1

E in order to deduce

s2
7w

2
3∆rem,1

E |X3 =
((
ξ − s6

2

)
(s3s6 − s2s7w3) + s7w3(s3s5 − s1s7w3)

)
×
((
ξ +

s6

2

)
(s3s6 − s2s7w3)− s7w3(s3s5 − s1s7w3)

)
. (5.24)

Since both factors are equal in homology and the first is in the class Y + 2X + 2W , while

the second is its orientifold image, we can derive the following relations among the odd

divisors:

Z− = −Y−
2

= X− +W− . (5.25)

Hence we can choose W− and X− as generators of H1,1
− (X3). Couplings between the U(1)

gauge fields to the corresponding two odd axions will give a mass to two out of the four

U(1) directions in type IIB.

The absence of the conifold points imposes certain restrictions on the brane inter-

sections:

XX̃ = DO7X = DO7X̃ , WW̃ = DO7W = DO7W̃ , XW̃ = X̃W = 0 , (5.26)

which written in terms of orientifold odd and even classes, translate into

X2
+ −X2

− = DO7X+ , W 2
+ −W 2

− = DO7W+ , DO7X− = DO7W− = 0 ,

X+W+ = X−W− , X−W+ = X+W− .
(5.27)

Finally it is convenient to remark some relations between divisors in the base and divisors

in the Calabi-Yau threefold:

π∗(K̄B) = DO7 , π∗(S7) = X+ +W+ , π∗(S9) = 3DO7 − U −W+ −
1

2
Y+ ,

π∗(W3) = W+ , π∗(W2) = U .
(5.28)

5.2.2 Charged matter

There is a rich spectrum of matter fields living at the intersections of the divisors introduced

above. All matter fields in the type IIB theory are going to be characterized by four U(1)

charges in addition to their corresponding representation under the non-Abelian gauge

symmetries. In the non-Abelian matter spectrum one finds (where once again the upper

indices give the charges under the massless U(1) generators):

One bifundamental:

• WU : (3,2)
( 1
6
,− 1

3
)

(1,0,0,0). This state sits at the vanishing of the ideal{
w3, ξ −

s6

2
, w2

}
. (5.29)
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Six triplets:

• W̃X : ((((
(((((3,1)(−1,−1,0,0)

(− 2
3
, 4
3

). The would-be triplet is localized at the vanishing of the

following ideal

{ξ, s7, w3, s6} , (5.30)

which is one of the forbidden conifold points. Due to that, this field is absent from

the matter spectrum.

• W̃ X̃ : (3,1)
( 1
3
,− 2

3
)

(−1,1,0,0). The state is located at the vanishing of{
w3, s7, ξ +

s6

2

}
. (5.31)

• W̃Y : (3,1)
( 1
3
, 1
3

)

(−1,0,1,0). Taking the union of the ideals for W̃ and Y (i.e. intersection of

the corresponding vanishing loci) one finds that it decomposes into two prime ideals,

the first being the conifold point {w3, ξ, s5, s6} and the other being{
w3, ξ +

s6

2
, s3

}
. (5.32)

• W̃ Ỹ : (3,1)
(− 2

3
, 1
3

)

(−1,0,−1,0). This state sits at the vanishing of the ideal{
w3, ξ +

s6

2
, s3s

2
5 − s2s5s6 + s1s

2
6

}
. (5.33)

• W̃Z : (3,1)
( 1
3
, 4
3

)

(−1,0,0,1). This state sits at the vanishing of the ideal{
w3, ξ +

s6

2
,−s6s8 + s5s9

}
. (5.34)

• W̃ Z̃ : (3,1)
(− 2

3
,− 2

3
)

(−1,0,0,−1). From the union of the ideals for W̃ and Z̃, one obtains two

prime ideals, one corresponding again to the conifold point {w3, ξ, s5, s6} and the

other being {
w3, ξ +

s6

2
, s9

}
. (5.35)

• WW̃ : (3,1)
( 1
3
,− 2

3
)

(2,0,0,0). This state is the antisymmetric representation of U(3) and sits

on top of the orientifold plane:

{w3, s6, ξ} . (5.36)

Three doublets:

• UX̃ : (1,2)
(− 1

2
,1)

(0,1,0,0). This field is localized at the vanishing of the following ideal{
s7, w2, ξ +

s6

2

}
. (5.37)

• UY : (1,2)
( 1
2
,0)

(0,0,1,0). This state lives at the union of the corresponding ideals for U and

Ỹ which is prime.

• UZ : (1,2)
( 1
2
,1)

(0,0,0,1). This field lives at the union of the generating ideals for U and Z̃

and it is also prime.
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Eight singlets:

• XX̃ :
��

��1
(1,−2)
(0,2,0,0) . The would-be singlet is localized at the vanishing of the following

ideal

{ξ, s7, s6} . (5.38)

However, this coincides with the O7 plane, where no symmetric matter is allowed.

Due to that, this field is not part of the spectrum.

• X̃Y : 1
(1,−1)
(0,1,1,0). This state sits at the vanishing of the ideal{

s7, ξ +
s6

2
, s3

}
. (5.39)

• X̃Z : 1
(1,0)
(0,1,0,1). The singlet is located at the vanishing of{

s7, ξ +
s6

2
, s5s9 − s6s8

}
. (5.40)

• XY : 1
(0,1)
(0,−1,1,0). This state sits at the vanishing of the ideal{

s7, ξ −
s6

2
, s3s

2
5 − s2s5s6 + s1s

2
6

}
. (5.41)

• XZ : 1
(0,2)
(0,−1,0,1). This state sits at the vanishing of the ideal{

s7, ξ −
s6

2
, s9

}
. (5.42)

• Y Ỹ : 1
(1,0)
(0,0,2,0). This state sits at the vanishing of the ideal

{s3s5 − s1s7, s2s5 − s1s6, s3s6 − s2s7, eq. (5.11)} . (5.43)

• Y Z : 1
(1,1)
(0,0,1,1). This state sits at the vanishing locus of the union of the ideals for Y

and Z, which occurs to be prime.

• Ỹ Z : 1
(0,1)
(0,0,−1,1). This state sits at the vanishing of the ideal:

{2s7s8−s6s9+2s9ξ,s6s8−2s5s9+2s8ξ, 2s3s6s8+2ξs2s9−2s3s5s9−s2s6s9+2s1s7s9,

s3s
2
8−s2s8s9+s1s

2
9,2s3s5s8−2s2s5s9+s1s6s9+2ξs1s9, 2ξs3s6−s3s26−2ξs2s7+2s3s5s7+

+s2s6s7−2s1s
2
7,2ξs3s5−s3s5s6−2ξs1s7+2s2s5s7−s1s6s7,

2ξs2s5−2s3s
2
5−2ξs1s6+s2s5s6−s1s26+2s1s5s7, eq. (5.11)} . (5.44)

• ZZ̃ : 1
(1,2)
(0,0,0,2). The ideal associated to this state is given by

{s8, s9, eq. (5.11)} . (5.45)

Note that, additionally to the recombination of singlets, the matter curves associated

with the states (3,1)
( 1
3
,− 2

3
)

(2,0,0,0) and (3,1)
( 1
3
,− 2

3
)

(−1,1,0,0) recombine to the matter curve (3,1)( 1
3
,− 2

3
)

in F-theory. In fact the locus of the last one is {w3,−s6s7 + s3s9w2}: the second equation

becomes simply s6s7 in the weak coupling limit.
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5.2.3 Fluxes and chiralities

Next we have to find all gauge flux directions consistent with the D5-tadpole which reads

0 = W−(3FW+ − 2F Y+ + FZ+ ) +X−(FX+ − 2F Y+ + FZ+ ) (5.46)

+ 3W+(FW− − FZ− ) + U(FU− − FZ− ) +X+(FX− − FZ− ) + Y+(F Y− − FZ− ) . (5.47)

Once again we distinguish between three different types of flux solutions:

• Even fluxes are

(FW+ , FX+ , F Y+ , F
Z
+ )1 =

1

2

(
1

3
, 1, 1, 1

)
F1 , (5.48)

(FW+ , FX+ , F Y+ , F
Z
+ )2 =

(
−1

3
,−1, 0, 1

)
F2 , (5.49)

(FW+ , FX+ , F Y+ , F
Z
+ )λ1 = λ1(DO7, 0, 0, 0) , (5.50)

(FW+ , FX+ , F Y+ , F
Z
+ )λ2 = λ2(0, DO7, 0, 0) , (5.51)

where the first two are identified with the massless U(1) directions. The two forms

F1 and F2 belong to H
(1,1)
+ (X3). The coefficients λ1 and λ2 are rational parameters

in agreement with flux quantization.

• Further we have some mixed directions

(FW+ , FU− )α1 = α1

(
1

3
U,−1

2
W−

)
, (FW+ , FX− )α2 = α2

(
1

3
X+,−W−

)
,

(FW+ , F Y− )α3 = α3

(
1

3
Y+,−W−

)
, (FX+ , FU− )α4 = α4

(
U,−1

2
X−

)
,

(FX+ , F Y− )α5 = α5(Y+,−X−) ,

(5.52)

where again αi, i = 1, . . . , 5 are rational numbers compatible with flux quantization.

There are three additional flux directions

(FW+ , FW− ) ∼ (W+,−W−) , (FX+ , FX− ) ∼ (X+,−X−) , (FX+ , FX− ) ∼ (W+,−W−) ,

(5.53)

which are consistent with the D5-tadpole. In analogy with the observations made in

previous sections, we can see that the first two are equivalent to the λi fluxes, while

the third is trivial owed to the fact that XW̃ = 0.

• For the orientifold odd sector we get the usual uniform distribution of odd fluxes

over all brane divisors FW− = FU− = FX− = F Y− = FZ− which is irrelevant for chirality,

D3-tadpoles and FI computations. In addition to that there is a component which

could be of relevance, namely

(FW− , FX− ) ∼
(

1

3
X−,−W−

)
. (5.54)

However this purely odd flux is equivalent to the α2 flux in eq. (5.52).

Therefore, we obtain nine flux directions, controlled by the two-forms F1, F2 and the seven

parameters λ1, λ2, α1, . . . , α5.

The chiralities for the type IIB matter spectrum have been summarized in appendix A.
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Type IIB fluxes vs F-theory G4-flux. We work out now the match between F-theory

and type IIB fluxes. The fluxes GF1
4 and GF2

4 match straightforwardly with the F1 and F2

fluxes defined in eq. (5.48) and (5.49), when we set F1 = π∗(F1) and F2 = π∗(F2). In that

case the F-theoretic as well as the type IIB contributions to chiralities, D3-tadpoles and

FI-terms coincide.

For the remaining F-theory fluxes one has to find a combination of type IIB flux

directions which reproduce the effects of the Λ-flux as well as the four Ai-fluxes. We obtain

the following match

• GΛ
4 :

F1 = 0 , F2 = −
(

2DO7 − U −
3

2
W+ −

1

2
X+ −

1

2
Y+

)
Λ ,

λ1 = α2 = 0 , λ2 = −2Λ , α1 = α4 = 2α3 = 2α5 = Λ ,

(5.55)

• GA1
4 :

F1 = 0 , F2 = −UA1 , α1 = −A1 , λ1 = λ2 = α2 = α3 = α4 = α5 = 0 , (5.56)

• GA2
4 :

F1 =
1

2
UA2 , F2 = 0 , α4 = −A2 , λ1 = λ2 = α1 = α2 = α3 = α5 = 0 , (5.57)

• GA3
4 :

F1 = F2 = −1

2
W+A3 , α1 = 2α3 = A3 , λ1 = λ2 = α2 = α4 = α5 = 0 , (5.58)

• GA4
4 :

F1 =
1

2
W+A4 , F2 = 0 , λ1 = −2

3
A4 , λ2 = α1 = α2 = α3 = α4 = α5 = 0 .

(5.59)

Again we see that there are two flux directions in the type IIB model which can not be

found in the vertical cohomology of the Calabi-Yau fourfold: the first is the α2-flux, which

as discussed around eq. (5.54) can be reinterpreted as a fully orientifold-odd flux direction;

the second is a combination of λ2- and α5-fluxes with α5 = 4λ2.

6 Charge 3 states, discrete symmetries and massive U(1)’s

In this section we would like to discuss some additional models which exhibit some inter-

esting properties from the F-theory point of view. The first one is a toric hypersurface

fibration based on the toric ambient space PF3 . The resulting model has a U(1) gauge

symmetry with three singlets, one of which has charge q = 3 under the U(1) [51]. This

model is appealing for various reasons: charges higher than two might seem exotic from
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section Line Bundle

u O(H − E1 + S9 +KB)

v O(H − E1 + S9 − S7)

w O(H)

e1 O(E1)

Figure 7. The polytope F3 and its dual. The table on the right provides the line bundle classes

for the coordinates in PF3 .

the perturbative point of view. Additionally, this model can be obtained as the Higgsed

version of an SU(2) theory in which the charge three state originates from a decomposition

of a three index symmetric representation of SU(2) [66]. The latter is a truly exotic matter

representation, only conceivable from the point of view of intersecting [p, q] 7-branes with

multi-pronged strings.

The second model corresponds to a Higgsed version of the F3 fibration, and has only a

Z3 discrete symmetry. This model is also a toric hypersurface fibration based on the toric

space PF1 [51, 67].

6.1 A U(1) model with charge three singlet

The toric ambient space PF3 = dP1 is shown in figure 7. In addition to the sections si that

we have in the PF5 fibration of section 4, here we have to introduce the additional section

s4 of the line bundle O(2S7 − S9). The fiber is cut by the following cubic polynomial

pF3 =s1u
3e2

1 +s2u
2ve2

1 +s3uv
2e2

1 +s4v
3e2

1 +s5u
2we1 +s6uvwe1 +s7v

2we1 +s8uw
2 +s9vw

2 .

(6.1)

After mapping pF3 to the Weierstrass form we obtain f , g and ∆, which we take from

ref. [51] and summarize in appendix B for completeness.

In eq. (6.1) one immediately recognizes a rational section at e1 = 0, which in the

(birationally equivalent) Weierstrass model becomes the zero section S0 of the elliptic

fibration. Additionally, as discussed in [51] there is an extra non toric section, whose

coordinates S1 : [x1 : y1 : z1] in the Weierstrass form can be found in appendix B. This

produces a massless U(1) gauge symmetry in the four dimensional effective theory. Its

corresponding generator is given by the Shioda map

σ = S1 − S0 − 3K̄B + S7 − 2S9 . (6.2)

There are no codimension-one singularities. At codimension-two one finds three I2

fibers corresponding to singlets charged under the U(1) symmetry. The loci for the corre-

sponding singlets are given in table 12.

Let us now discuss the type IIB limit of this model, which we can reach upon setting

the following ε scalings for the sections si:

s1 → ε1s1, s5 → ε1s5, s8 → ε1s8, si → ε0si (i 6= 1, 5, 8) . (6.3)
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Representation Locus

13 V (I(3)) := {s8 = s9 = 0}
12 V (I(2)) := {s4s

3
8 − s3s

2
8s9 + s2s8s

2
9 − s1s

3
9 = s7s

2
8 + s5s

2
9−s6s8s9 = 0}\ V (I(3))

11 V (I(1)) := {y1 = fz4
1 + 3x2

1 = 0}\ (V (I(2)) ∪ V (I(3)))

Table 12. The loci for the charged matter representations under the U(1) symmetry. The charges

are written as subscripts. The locus for the singlet 11 is given in terms of the sections x1, y1 and

z1 given in appendix B.

The location of the D7-branes can be read out from the irreducible components of ∆E = 0

with

∆E = −1

4
s9 (−s3s6s7 + s2s

2
7 + s2

3s9 + s4(s2
6 − 4s2s9))

× (s2
2s

2
8 + s2(−s5s6s8 + s2

5s9 − 2s1s8s9) + s1(s2
6s8 − s5s6s9 + s1s

2
9)) .

(6.4)

We encounter three factors, two of which split in the Calabi-Yau threefold

ξ2 =
s2

6

4
− s2s9 ,

while the one in the middle gives an orientifold invariant D7-brane. The brane configuration

looks schematically as depicted on the right hand side of figure 8.

In the Calabi-Yau treefold the locus s9 = 0 splits into the following components:

X ≡
{
s9 = 0, ξ − 1

2
s6 = 0

}
and X̃ ≡

{
s9 = 0, ξ +

1

2
s6 = 0

}
. (6.5)

The invariant brane is given by:

W = {−s3s6s7 + s2s
2
7 + s2

3s9 + s4(s2
6 − 4s2s9) = 0} ∩X3 . (6.6)

Finally we have the remaining locus. Here we do not write explicitly the ideals of the two

components. We instead compute their homology classes. We start by noticing that

s2
9∆rem

E =

(
s8

(s6

2
− ξ
)
− s9

(
s1s9 + s5

(s6

2
− ξ
)2
))

×
(
s8

(s6

2
+ ξ
)
− s9

(
s1s9 + s5

(s6

2
+ ξ
)2
))

.

(6.7)

The class of each factor is 1
2(8DO7 −W − (X + X̃)), while the class of the product of the

two must be Y + Ỹ +2(X+ X̃), where Y and Ỹ correspond to the split divisors for ∆rem
E in

the Calabi-Yau threefold. Identifying the first factor with Y + 2X we obtain the following

homology relation:

Y =
1

2

(
8DO7 −W − (3X − X̃)

)
. (6.8)

We see that Y− = −2X−. The splitting loci support of a brane and its image in differ-

ent homology classes. Hence the corresponding gauge bosons are massive. The massless

combination has the following generator:

Q = 2QX +QY . (6.9)
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Type IIB
XX̃ XỸ WX Ỹ Y XY YW

��
�1(2,0) 1(1,1) 1(−1,0) 1(0,−2) 1(1,−1) 1(0,1)

F-theory – 13 1−2 11

Table 13. The matter arising at the different brane intersections and their recombination pattern

in the F-theory model. Note that the singlet 1(2,0) is not present because the divisors X and X̃

only intersect on top of the orientifold plane.

The matter representations living at the brane intersections are summarized in table 13.

We also include the corresponding curves in F-theory. We notice once more that curves that

have the same charges under the massless U(1) merge away from the weak coupling limit

(ε 6= 0). Moreover we see that the charge 3 state arises also in perturbative type IIB theory.

Let us finish with an observation. By tuning the complex structure moduli of the

F-theory model under consideration, one can un-Higgs the massless U(1) symmetry to an

SU(2) with exotic three-index symmetric representation matter [66]. One could wonder

what happens in the weak coupling limit. In fact one realizes that there is no ε scaling

that does not destroy the spectrum.18 This is actually expected, as in perturbative type

IIB, there are no states in the three-index symmetric representations.

Fluxes. In F-theory, the generic vertical G4 flux is

G4 = σ ∧ F + Λ(S2
0 + K̄B(S0 + S9)− S7S9 + S2

9 ) , (6.10)

with F a vertical divisor.

On the type IIB side, the D5-tadpole cancellation condition involving the gauge fluxes

on the D7-branes is

X−(FX+ − 2F Y+ ) +X+(FX− − F Y− ) + W(FW
− − F Y− ) = 0 , (6.11)

from which we obtain the following flux directions

(FX+ , F Y+ ) = (2, 1)F , (FX+ , F Y+ )λ = λ(DO7, 0) , (FX+ , FW
− )β = β(W,−X−) , (6.12)

in addition to the odd component FX− = F Y− = FW
− corresponding to a choice of B-field.

The matching of the flux components in type IIB with the ones in F-theory proceeds

as follows. The massless U(1) gauge fluxes match under the condition F = π∗(F). As

for the Λ-flux we see once more that it is matched by a linear combination of F -, λ- and

β-fluxes:

F =
1

2
ΛX+ , λ = Λ , β = −1

2
Λ . (6.13)

We note again that in the type IIB limit we have one additional flux direction in comparison

to the F-theory uplift.

18The complex structure must be tuned such that s5 = s8σ5, s6 = s8σ7 + s9σ5 , s7 = s9σ7 [66]. In

order to have the proper weak coupling scaling, one imposes s8 → εs8. But this would also require to set

s6 → s9σ5m making the CY threefold to develop an A1 singularity over a curve. Moreover the invariant W

brane would factorize giving an extra brane wrapping the s9 = 0 locus.
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6.2 A model with Z3 discrete gauge symmetry

Let us start from the F-theory U(1) model just described and let us give a vacuum expecta-

tion value (VEV) to the charge 3 state. We expect to break the massless U(1) symmetry to

the Z3 subgroup that preserves this VEV. Under this discrete group, the other two states

have the same charge, since −2 = 1 mod 3.

Geometrically, this VEV can be viewed as a complex structure deformation of the

Weierstrass model. The same space can be described by cutting the fiber out of the toric

ambient space PF1 = P2 instead of dP1, so that in comparison with figure 7 we do not have

the divisor E1 (the zero section). The deformation can be read in the extra monomial in

the fiber equation (i.e. an extra node in the dual polytope) which we denote by s10 and

which is a section of O(2S9 − S7). The corresponding fiber equation reads

pF1 = s1u
3+s2u

2v+s3uv
2+s4v

3+s5u
2w+s6uvw+s7v

2w+s8uw
2+s9vw

2+s10w
3 . (6.14)

This equation does not define an elliptic, but a genus-one fibration [4, 5] given that it does

not have sections but merely three-sections, out of which we can choose S(3) = {u = 0}∩Y4

as a representative.

In order to get the Weierstrass form for this model one take its Jacobian19 J([pF1 ]),

which does exhibit a zero section corresponding to the trivial line bundle. The final ex-

pressions for f and g for this model have been presented in appendix B. One can show

that at codimension-one there are no singularities in the fourfold. Moreover there are no

extra sections in the Weierstrass model. Hence, as we expected, there are neither non-

Abelian nor Abelian continuous gauge symmetries in this model. Instead, the presence of

the three-section together with the fact that the model can be understood in terms of a

Higgs mechanism in which a charge three singlet picks a VEV are supporting evidence for

the presence of a discrete Z3 gauge symmetry20 [67].

As explained in [51], looking back at eq. (6.14) one finds that an I2 fiber develops

whenever pF1 factorizes as

pF1 = s1(u+ α1v + α2w)(u2 + β1v
2 + β2w

2 + β3uv + β4vw + β5uw) , (6.15)

with αi, βi suitable polynomials in the si. From the näıve counting of parameters we can

deduce that this type of factorization occurs at codimension-two.21 The corresponding

singlet carries charge 1 ≡ −2 mod 3 under the discrete symmetry. We see that after the

transition the two curves that have the same charges under the surviving symmetries join

together into one curve.

19That is the group of degree zero line bundles over [pF1 ].
20More formally, the presence of the discrete symmetry can infered explicitly after finding the Tate-

Shafarevich goup of the Jacobian fibration J([pF1 ]) [67].
21In [51] it is shown that once one has constructed the ideal I(αi,βi,si) after comparing monomial in (6.14)

and (6.15), and constructing the corresponding elimination ideal I(si) = I(si,α,β) ∩K[si] in the polynomial

ring K[si] generated by the sections si only, the ideal I(si) is generated by 50 polynomials and that its

codimension in K[si] is indeed two.
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W

Z̃ ZO7

W

X̃ X

Ỹ YO7

Figure 8. The intersecting brane configurations for the fibrations based on PF1
(left) and PF3

(right). In the limit s10 = 0, the brane Z splits into two.

The type IIB limit of this model is obtained after setting the following ε-dependence

on the sections si:

s1 → ε1s1, s5 → ε1s5, s8 → ε1s8, s10 → ε1s10, si → ε0si (i 6= 1, 5, 8, 10) . (6.16)

In this limit the locus of the D7-branes is given by

∆E = −1

4
(−s3s6s7 + s2s

2
7 + s2

3s9 + s4(s2
6 − 4s2s9))

×
[
− s2

10s
3
2 + s10(s1s

3
6 − s2s6(s5s6 + 3s1s9) + s2

2(s6s8 + 2s5s9))

+ s9(s2
2s

2
8 + s2(−s5s6s8 + s2

5s9 − 2s1s8s9) + s1(s2
6s8 − s5s6s9 + s1s

2
9))
]
.

(6.17)

In the Calabi-Yau threefold once again we have an invariant D7-brane W, in addition to

the remaining part of the discriminant which splits into two divisors Z and Z̃ (see the

left-hand side of figure 8). One can easily prove the following homology relations

Z+ = Z + Z̃ = 8DO7 −W , Z− = Z − Z̃ = −3X− , (6.18)

where we have used the divisor X− = X− X̃, with X and X̃ as defined in eq. (6.5). Recall

that in this model the absence of the conifold point is given in terms of the divisor X+,

i.e. DO7X+(2DO7 −X+) = 0 , even though there is no physical brane configuration along

this divisor.

At weak coupling, the spectrum of this model is identical as in the Morrison-Park

model of section 2.1, with a singlet with charge 2 (under the U(1) living on the Z-brane)

living at the intersection of the banes Z and Z̃ away from the orientifold plane, and a

singlet with charge 1 living at the intersection of Z with the invariant brane W. However,
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Type IIB F-theory

Z̃Z 1−2
1

ZW 11

Table 14. On the left column, the states in type IIB with the charges under the massive U(1). On

the right column the F-theory state (charged under the discrete Z3 symmetry).

in contrast to the Morrison-Park model, the divisors Z and Z̃ are in different homology

classes. For this reason, the U(1) gauge symmetry in our case becomes massive. Hence,

at the perturbative level we only have a global U(1) symmetry under which the two states

are distinguished. The matching of states between the F-theory and the type IIB model is

summarized in table 14.

If we set s10 ≡ 0, the setup just outlined becomes the one described in the U(1)

model above, i.e. (6.17) coincides with eq. (6.7). This is exactly the same Higgs mechanism

described on the F-theory side. Let us see how it works in type IIB: the field that takes

non-zero VEV is 11,1 sitting at the intersection XỸ (see table 13). The elements of U(1)X×
U(1)Y are eiαQX+βQY . The state 11,1 transforms by the phase ei(α+β). The non-zero VEV

is then left invariant by the U(1)Z subgroup with elements eiβ(−QX+QY )e2πikQX . Since all

the states in the model have integer charges, the last factor can be neglected and one gets

a U(1) symmetry with generator QZ = −QX +QY . Accordingly, the D7-branes wrapping

the X (X̃) and the Ỹ (Y ) divisors recombine to give the brane wrapping the Z̃ (Z) divisor.

The other states, 1(−1,0) and 1(0,1) have the same charge QZ and the corresponding curves

join together in the matter curve for 11. The same happens for 1(0,−2) and 1(1,−1) joining

together in 1−2.

The massive U(1)Z symmetry is broken at non-perturbative level by instanton effects.

In the present model, there is for instance a D1-instanton wrapping the curve Σ = C − C̃,
where C is a holomorphic curve intersecting the divisor X at one point.22 Its charge under

the D7-brane U(1) living on the Z divisor is equal to [40]

qD1 = Σ · Z =
1

2
Σ · Z− = −3

2
Σ ·X− = −3Σ ·X = −3 .

In the present model we have h1,1
− (X3) = 1 and hence Σ is the minimal (odd) curve that

can be wrapped by a D1-brane. Hence the D1-instantons break the massive U(1) to its Z3

subgroup whose elements are eiβQZ where β = k
3 with k = 0, 1, 2. One should also check

the D3-instantons, i.e. D3-branes wrapping invariant four-cycles in X3 and possibly with

flux, but the argument above works in the same way, giving the same discrete symmetry.

We then see that in type IIB the discrete symmetry arises at the non-perturbative level

and is a subgroup of the massive U(1). The two states have the same Z3 symmetry. When

we go away from the perturbative weak coupling limit, the matter curves supporting such

22This curve will exist generically. If the minimal intersection number is large than one, the surviving

discrete group may be bigger.
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states join together into one curve, supporting a state with again the same Z3 charge.23 This

agrees with what claimed in section 3: when two type IIB matter curves associated with

states distinguished by massive U(1) charges (but with the same massless U(1) charges) join

together, then one can conclude that the actual symmetry is a discrete subgroup (possibly

trivial) under which the joining states have the same charges.

Let us comment on the possible couplings. In the F-theory model studied in this

section, we expect a perturbative cubic coupling 13 at the triple self-intersection of the I1

locus (or at the self-intersection of the corresponding matter curve). Hence, the respective

type IIB coupling should also be of order one. In fact, in type IIB we have two states

corresponding to the F-theory one. Most of the triple couplings involving 1−2 and 11 are

allowed only by the unbroken discrete Z3 symmetry, but are forbidden by the massive U(1).

If all of them would be of this type, we would have a discrepancy with what is predicted by

F-theory. However, this does not happen, because there exists one triple coupling allowed

by the massive U(1), i.e. 1−21
2
1. This is very similar to what happens with the down

Yukawa coupling of section 3, where only one of the possible coupling was allowed by the

massive U(1) and that was actually the one corresponding to the F-theory Yukawa.

In [40, 41] it was stressed that the coupling terms allowed by the massless U(1) sym-

metries can be divided into two categories: the ‘perturbative’ and the ‘non-perturbative’

couplings. The first ones are of order one and are typically associated with the points of

enhanced symmetry. The second ones are exponentially suppressed as they are mediated

by membrane instantons with finite size (also after the F-theory limit). To distinguish

among them in F-theory, one needs to find the homological relations between the fiber

components wrapped by the matter M2-branes involved in the coupling. In the first case,

the homological relation is inside the fiber homology, while in the second it is satisfied only

in the homology of the CY fourfold. In future investigations, it would be interesting to

analyze the fiber structure in the present simple model and see what is the fate of the type

IIB instantonic couplings.

Fluxes and chiralities. There is a single flux direction on the F-theory side,

G4 =
Λ

9

(
3S(3)(3S(3) + 3K̄B − 2S7 − 2S9)− 2S2

7 + 5S7S9 − 2S2
9

)
. (6.19)

This is in agreement with the vanishing of the following Chern-Simons coefficients [82]∫
Y4

G4 ∧ S(3) ∧Dα =

∫
Y4

G4 ∧Dα ∧Dβ = 0 , (6.20)

with Dα, Dβ being any of the vertical divisors in the compactification. The contribution

of the G4 flux to the D3-tadpole reads

1

2

∫
G4 ∧G4 =

Λ2

18
(S7 − 2S9)(2S7 − S9)(−3K̄B + S7 + S9) . (6.21)

23Notice that the elements e
2πik

3
(−QX+QY ) of the discrete symmetry in type IIB can be identified with

those e
2πik′

3
(2QX+QY ) of the Z3 subgroup of the massless U(1) (that is indeed the discrete symmetry

identified in F-theory): the difference is by the phase e2πiQX , that is always equal to one in this mode, due

to the fact that the states have integer QX charges.
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On the type IIB side we need to impose the D5-tadpole cancellation condition

Z−F
Z
+ + Z+F

Z
− + WFW

− = 0 . (6.22)

The allowed fluxes are

(FZ+ )λ = λDO7 , (FZ+ , F
W
− )β = β(W,−Z−) . (6.23)

In order to match the D3-tadpole contribution of the G4-flux (eq. (6.21)) with the type

IIB one, we need to impose

λ = −Λ

3
, β =

Λ

6
, (6.24)

up to terms proportional to X+DO7(2DO7 − X+) (that on the smooth CY threefold are

zero). This is the type IIB flux that corresponds to the Λ F-theory flux. Again, there is

a massive type IIB flux that is not described in the resolved F-theory background by a

harmonic vertical four-form flux.

Finally, one could use the flux match to compute chiralities in F-theory, where the

matter locus is very complicated to deal with. In fact, in type IIB we easily compute

χ(1−2) =
1

4
(48D2

O7 + W2 − 9X2
+ + 2DO7(−7W + 9X+))(DO7λ+ Wβ) (6.25)

χ(11) =
1

2
W(DO7(−8DO7 + W)λ+ (−8DO7W + W2 + 18DO7X+ − 9X2

+)β) . (6.26)

Adding these two chiralities we arrive at a weak coupling expression for the chirality of the

Z3 singlet under the Λ-flux:

χ(1)w.c. =
Λ

8
(−(8DO7−W)(−2DO7+W)2+6DO7(−2DO7+3W)X++3(2DO7−3W)X2

+) .

(6.27)

This can be written in terms of the base divisors, recalling that

DO7 = π∗(K̄B) , X+ = π∗(S9) , W = π∗(2K̄B + 2S7 − S9). (6.28)

The resulting chirality at weak coupling is expected to match the F-theory result, i.e.

χ(1)F = χ(1)w.c. . (6.29)

This is true when the type IIB CY threefold has no conifold singularity. If we do not

require this, then the intersection S9K̄B(2K̄B − S9) is generically non-zero, and we can

only claim that

χ(1)F = χ(1)w.c. + a1S9K̄B(2K̄B − S9) . (6.30)

Note now that this model has a very special feature: it is symmetric upon exchange of

the P2 coordinates v and w. In the dual polytope this corresponds to a pairwise exchange

of the sections si which essentially amounts to exchange between the divisors S7 and S9.

Due to this symmetry, the F1 model exhibits a second weak coupling limit, which is based

on the following ε-scalings for the sections si

s1 → ε1s1, s2 → ε1s2, s3 → ε1s3, s4 → ε1s4, si → ε0si (i 6= 1, 2, 3, 4) . (6.31)
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In this limit we have the following relations to the base divisors

DO7 = π∗(K̄B) , X+ = π∗(S7) , W = π∗(2K̄B + 2S9 − S7) (6.32)

such that when we plug these expressions in eq. (6.27), we obtain a different weak coupling

limit of the F-theory chirality χ(1)′w.c. satisfying

χ(1)F = χ(1)′w.c. + a2S7K̄B(2K̄B − S7) . (6.33)

By comparing the two expressions (6.30) and (6.33) we are able to obtain the general

F-theory expression for the chirality of the singlet 1 in F-theory:

χ(1)F = Λ(S7 − 2S9)(2S7 − S9)(−3K̄B + S7 + S9) . (6.34)

It is remarkable that we could have access to this quantity by looking at the weak coupling

limit of the F-theory compactification. Note that the locus of the Z3 charged singlet

is generated by fifty non-transversally intersecting polynomials and therefore, the direct

computation of the chiral index turns cumbersome.

7 Conclusions

In this work we considered F-theory compactifications with interesting phenomenological

features, like an MSSM spectrum, a set of massles U(1) symmetries, charge three states

or discrete symmetries. For each model, we showed that a weak coupling limit exists: we

worked out the ε scaling of the sections defining the corresponding elliptic fibration, such

that the resulting perturbative type IIB configuration presents the same spectrum as the

F-theory one. This is not always possible, as it happens for example when the spectrum

includes exotic matter states. As a first result, this shows once more that perturbative type

IIB is a powerful setup for model building, where several of the features of the F-theory

models can be realized.

We were able to match the gauge group and the matter content with the corresponding

type IIB model. In the F-theory models, we worked out all the harmonic vertical four-form

fluxes. We saw that these G4 fluxes can describe three types of D7-brane fluxes: 1) even

fluxes along massless U(1) generators; 2) even and odd fluxes along massive U(1) genera-

tors, provided that they cancel the D5-tadpole; 3) odd diagonal fluxes along an Sp(1) stack

(the diagonal U(1) gauge boson is projected out by the orientifold projection, but the cor-

responding flux survives if along an odd form). However, not all the D5-tadpole canceling

massive U(1) fluxes are described by harmonic vertical G4 in the resolved manifold. We

noticed that these fluxes always induce a T-brane background in a supersymmetric solu-

tion (if one does not deform the singular geometry). In F-theory, this T-brane obstructs

the resolution. Hence these fluxes may not appear among the harmonic four-forms in the

resolved fourfold. Remember that the fact that the G4 flux satisfy the D-term condition

implies that it is harmonic, but if it violates the D-term condition it may be harmonic or

not. This answers a question raised in [34], as anticipated in the introduction. These extra
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fluxes may be described by non-harmonic [12] or non-vertical four-forms [111]. It would be

interesting to identify the proper four-form in F-theory, if it exists.

We finally found that some F-theory matter curves split at ε → 0. This is related to

the fact that at zero string coupling one recovers a continuous U(1) symmetry [37] that at

finite coupling is broken by non-perturbative effects (like D1-instantons) [40, 41]. In fact,

in type IIB, geometrically massive U(1) symmetries are preserved as global symmetries

at the perturbative level, and are generically broken by non-perturbative effects to some

discrete subgroup. Correspondingly, at weak coupling there are distinct curves for states

that have different massive U(1) charges. In F-theory this distinction is not present: the

elliptic fibration is only sensitive to the true (unbroken) symmetries. Hence states that have

the same surviving discrete symmetry charges but different broken massive U(1) charges

live on the same curve. Said differently, the splitting of the matter curves at ε → 0 is a

manifestation of the fact that the full massive U(1) symmetry is restored at zero coupling

(in fact, in [37] it was shown that at ε→ 0 a new closed two-form arises that corresponds

to this U(1) becoming a massless unbroken symmetry). We aim to come back to this point,

by applying the approach of [40]. In the explicit model of section 3.3, we moreover showed

how to use this splitting to infer which flux localizes the zero mode wave functions away

from the down Yukawa point, in such a way to suppress this coupling with respect to the

order one top Yukawa coupling.

We believe that our constructions may be useful for future investigations, especially

when one needs to test some F-theory ideas in the most known perturative regime.
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A Chiral matter in the SU(3) × SU(2) × U(1)2 model

Representation Chirality

(3,2)
( 1
6
,− 1

3
)

(1,0,0,0)
1
12UW+(F1 − 2F2 + 6DO7λ1 + α1(−6DO7 + 2U + 3W+) + 2α2X+ + 3α4X+ + 2α3Y+)

(3,1)(− 2
3
, 1
3

)

1
12W+X+(2F1 − 4F2 − 3DO7λ1 + 3DO7λ2 − 2(α1 − 3α4)U

−2α2(6DO7 − 3W+ +X+)− 2(α3 − 3α5)Y+)

(3,1)
( 1
3
, 1
3

)

(−1,0,1,0)

1
12W+[(F1 + F2 − 3DO7λ1 − α1U − α2X+)(−4DO7 + 2(W+ +X+) + Y+)

+3α5X+(2(W+ +X+) + Y+)− α3(2DO7(6W+ + Y+)− (3W+ − Y+)(2(W+ +X+) + Y+))]

(3,1)
(− 2

3
, 1
3

)

(−1,0,−1,0)

1
12W+[(2F1 − F2 − 3DO7λ1 + α1U + α2X+)(−4DO7 + 2(W+ +X+)− Y+)− 6DO7λ1Y+)

+3α5X+(2(W+ +X+) + Y+)− α3(2DO7(6W+ + Y+)− (3W+ − Y+)(2(W+ +X+) + Y+))]

(3,1)
( 1
3
, 4
3

)

(−1,0,0,1)
1
12W+(−10DO7 + 2(U + 2W+ +X+) + Y+)(−F1 − 4F2 + 3DO7λ1 + α1U + α2X+ + α3Y+)

(3,1)( 1
3
,− 2

3
)

1
12W+(−6DO7 + 2(U +W+) + Y+)(2F1 + 2F2 + 3DO7λ1 + α1U + α2Xp+ α3Y+)

(3,1)
( 1
3
,− 2

3
)

(2,0,0,0)
1
6DO7W+(F1 + 2(−F2 + 3DO7λ1 + α1U + α2X+ + α3Y+))

(1,2)
(− 1

2
,1)

(0,1,0,0) −1
4UX+(F1 − 2F2 + 2DO7λ2 + α4(2DO7 + 2U −X+)− (α1 − 2α2)W+ + 2α5Y+)

(1,2)
( 1
2
,0)

(0,0,1,0)
1
4U(F1Y+ + 2(2DO7 −W+ −X+)(α1W+ − 2α3W+ + (α4 − 2α5)X+))

(1,2)
( 1
2
,1)

(0,0,0,1) −1
4U [(F1 + 2F2)(−8DO7 + 2U + 3W+ +X+ + Y+) + (2DO7 −W+ −X+)(α1W+ + α4X+)]

1
(1,−1)
(0,1,1,0)

1
4X+[(F1 − F2 + α4U − α3W+)(−4DO7 + 2(W+ +X+) + Y+) + λ2DO7(−4DO7 + 2X+ + Y+)

−α5(2DO7(−2X+ + Y+) + (X+ − Y+)(2(W+ +X+) + Y+))]

1
(1,0)
(0,1,0,1) −1

4X+(−10DO7 + 2(U + 2W+ +X+) + Y+)(F1 +DO7λ2 + α4U + α5Y+)− λ2DO7W+]

1
(0,1)
(0,−1,1,0)

1
4X+[(F2 − α4U − α3W+)(4DO7 − 2(W+ +X+) + Y+)− λ2DO7(4DO7 − 2X+ + Y+)

+α5((2(W+ +X+)− Y+)(X+ + Y+)− 2DO7(2X+ + Y+))]

1
(0,2)
(0,−1,0,1) −1

4X+[(6DO7 − 2(U +W+)− Y+)(−2F2 +DO7λ2 + α4U + α5Y+)−DO7λ2W+]

1
(1,0)
(0,0,2,0)

1
8F1(8DO7(W+ +X+)− 4(W+ +X+)2 − 2DO7Y+ + Y 2

+)

1
(1,1)
(0,0,1,1)

−1
4 [(F1 + F2)(−2(W+ +X+)(−2DO7 +W+ +X+) + (−8DO7 + 2U + 3W+ +X+)Y+ + Y 2

+)

+(α3W+ + α5X+)(32D2
O7 + (W+ +X+)(4U + 6W+ + 2X+ + Y+)

−2DO7(4U + 12W+ + 8X+ + Y+))− 4DO7(α3W
2
+ + α5X

2
+)]

1
(0,1)
(0,0,−1,1)

1
4 [F2(−2(W+ +X+)2 − (2U + 3W+ +X+)Y+ − Y 2

+ + 4DO7(W+ +X+ + 2Y+))

+(α3W+ + α5X+)(32D2
O7 + (W+ +X+)(4U + 6W+ + 2X+ + 3Y+)

−2DO7(4U + 12W+ + 8X+ + 3Y+))− 4DO7(α3W
2
+ + α5X

2
+)]

1
(1,2)
(0,0,0,2)

1
8(F1 + 2F2)(6DO7 − 2(U +W+)− Y+)(8DO7 − 2(U + 2W+ +X+)− Y+)

Table 15. Chiral Indices for the matter in type IIB limit of the SU(3) × SU(2)×U(1)
2

model

B Additional data for hypersurfaces based on F3 and F1

In this appendix we merely reproduce a part of appendix B of [51], which provides f and g

for the genus-one fibration based on F1 as well as the coordinates of the non-troic section

in F3.
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B.1 f and g for the Wierstrass model based on PF1

f =
1

48
(−(s26 − 4(s5s7 + s3s8 + s2s9))2 + 24(−s6(s10s2s3 − 9s1s10s4 + s4s5s8

+ s2s7s8 + s3s5s9 + s1s7s9) + 2(s10s
2
3s5 + s1s

2
7s8 + s2s3s8s9 + s1s3s

2
9

+ s7(s10s
2
2 − 3s1s10s3 + s3s5s8 + s2s5s9) + s4(−3s10s2s5 + s2s

2
8 + (s25 − 3s1s8)s9)))) , (B.1)

g =
1

864
((s26 − 4(s5s7 + s3s8 + s2s9))3 − 36(s26 − 4(s5s7 + s3s8 + s2s9))

× (−s6(s10s2s3 − 9s1s10s4 + s4s5s8 + s2s7s8 + s3s5s9 + s1s7s9)

+ 2(s10s
2
3s5 + s1s

2
7s8 + s2s3s8s9 + s1s3s

2
9 + s7(s10s

2
2 − 3s1s10s3 + s3s5s8 + s2s5s9)

+ s4(−3s10s2s5 + s2s
2
8 + (s25 − 3s1s8)s9))) + 216((s10s2s3 − 9s1s10s4 + s4s5s8

+ s2s7s8 + s3s5s9 + s1s7s9)2 + 4(−s1s210s33 − s21s10s37 − s24(27s21s
2
10 + s10s

3
5

+ s1(−9s10s5s8 + s38)) + s10s
2
3(−s2s5 + s1s6)s9 − s1s23s8s29

− s27(s10(s22s5 − 2s1s3s5 − s1s2s6) + s1s8(s3s8 + s2s9))

− s3s7(s10(−s2s5s6 + s1s
2
6 + s22s8 + s3(s25 − 2s1s8) + s1s2s9)

+ s9(s2s5s8 − s1s6s8 + s1s5s9)) + s4(−s210(s32 − 9s1s2s3)

+ s10(s6(−s2s5s6 + s1s
2
6 + s22s8) + s3(s25s6 − s2s5s8 − 3s1s6s8))

+ (s10(2s22s5 + 3s1s3s5 − 3s1s2s6) + s8(−s3s25 + s2s5s6 − s1s26 − s22s8 + 2s1s3s8))s9

+ (−s2s25 + s1s5s6 + 2s1s2s8)s29 − s21s39 + s7(s10(2s2s
2
5 − 3s1s5s6 + 3s1s2s8 + 9s21s9)

− s8(s2s5s8 − s1s6s8 + s1s5s9)))))) . (B.2)

These equations also provide the right expressions f and g in the case of F11, F5 and

F3 after setting some suitable sections to zero. For example, in order to obtain f and g for

F3 one sets s10 = 0.

B.2 The Weierstrass coordinates of the non-toric section S1 in F3

y1 =
1

2
(2s31s

9
9+s1(2s2(s25−3s1s8)−3s1s5s6)s89+((s3s

2
5−s2s6s5+s1(s26−s5s7))s25

+6s1(s22+s1s3)s28+(−2s22s
2
5+2s1s2s6s5+s1(3s1(s26+2s5s7)−4s3s

2
5))s8)s79

−s8(2(s32+6s1s3s2+3s21s4)s28−(s5s6s
2
2+(6s3s

2
5−4s1(s26+2s5s7))s2

+s1(6s4s
2
5+2s3s6s5−9s1s6s7))s8+s5(3s4s

3
5+2s3s6s

2
5−3s2s7s

2
5−2s2s

2
6s5+s1s6s7s5

+2s1s
3
6))s69+s28(s1s

4
6−s2s5s36+s3s

2
5s

2
6+7s1s5s7s

2
6+9s4s

3
5s6−8s2s

2
5s7s6+s1s

2
5s

2
7

+6(s3(s22+s1s3)+2s1s2s4)s28−s3s35s7+(−4s23s
2
5−8s2s4s

2
5−6s1s4s6s5+s22s

2
6+6s21s

2
7

+2s2(s2s5+7s1s6)s7+s3(2s1(s26+2s5s7)−6s2s5s6))s8)s59−s38(s8(6s2s8−5s5s6)s23

−5s6s7(s25−2s1s8)s3+5s7(s6s8s
2
2−s5(s26+s5s7)s2+2s1s7s8s2+s1s6(s26+2s5s7))

+s4(5(2s26+s5s7)s25−10(s3s5+s2s6)s8s5+6(s22+2s1s3)s28))s49+s48(2(s33+6s2s4s3+3s1s
2
4)s28

−(6s24s
2
5+s23s

2
6−4(s22+2s1s3)s27+2s3(s3s5−3s2s6)s7+2s4(s2s

2
6+7s3s5s6−3s1s7s6

+2s2s5s7))s8+5(s4s5s6(s26+2s5s7)+s7(s7(2s1s
2
6−s2s5s6+s1s5s7)−s3s5(s26+s5s7))))s39

−s58(3s8(2s2s8−3s5s6)s24+(s46+(7s5s7−4s3s8)s26+2s2s7s8s6+s25s
2
7−8s3s5s7s8

+6s8(s8s
2
3+s1s

2
7))s4+s7(s6s8s

2
3−(s36+8s5s7s6−6s2s7s8)s3+s7(9s1s6s7+s2(s26−s5s7))))s29

+s68(3s8(−s26−2s5s7+2s3s8)s24+s7(2s36+s5s7s6−2s3s8s6+4s2s7s8)s4+s27(2s8s
2
3−2s26s3

−3s5s7s3+3s1s
2
7+2s2s6s7))s9+s78(−2s28s

3
4+3s6s7s8s

2
4+s27(−s26+s5s7−2s3s8)s4

+s37(s3s6−s2s7))) , (B.3)
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x1 =
1

12
(12s21s

6
9+4(2s2(s25−3s1s8)−3s1s5s6)s59+((s26−4s5s7)s25+12(s22+2s1s3)s28

−4(4s3s
2
5+s2s6s5−3s1(s26+2s5s7))s8)s49−2s8(−4(s6s7+3s4s8)s25

+(s36−10s3s8s6+4s2s7s8)s5+2s8(9s1s6s7+6s1s4s8+s2(s26+6s3s8)))s39

+s28(s46−2s5s7s
2
6−8s25s

2
7+12(s23+2s2s4)s28−4(9s4s5s6−s7(5s2s6+6s1s7)

+s3(s26+2s5s7))s8)s29−2s38(12s3s4s
2
8+2(s7(s3s6+4s2s7)−3s4(s26+2s5s7))s8

+s6s7(s26−4s5s7))s9+s48((s26−4s5s7)s27+4(2s3s7−3s4s6)s8s7+12s24s
2
8)) , (B.4)

z1 = s7s
2
8+s9(s5s9−s6s8) . (B.5)
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[89] L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U(1)’s in type-I and type IIB

D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].

[90] E. Poppitz, On the one loop Fayet-Iliopoulos term in chiral four-dimensional type-I

orbifolds, Nucl. Phys. B 542 (1999) 31 [hep-th/9810010] [INSPIRE].
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