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ABSTRACT  10 

Quantitative analyses of mono-p-coumaroylquinic acids (pCoQAs) and total chlorogenic acids 11 

(CGAs) in  green coffee commercial lots  of C. arabica C. canephora and C. liberica from different 12 

geographic origins and eight wild Coffea species were carried out. Among the commercial lots, 13 

pCoQAs average content of C. arabica (0.67 mg/g) is higher than that of C. canephora (0.40 mg/g) 14 

being C. liberica intermediate (0.58 mg/g). As far as the analyzed wild Coffea species is concerned, 15 

C. pseudozanguebariae is characterized by the lower pCoQAs content (0.12 mg/g) whereas C. 16 

sessiliflora is by far the richest source of pCoQAs (2.18 mg/g). Effect of the roasting process on the 17 

mono-p-coumaroylquinic acids profile was evaluated for the economically exploited species C. 18 

arabica and  C. canephora. For the first time distribution of mono-p-coumaroylquinic acid isomers 19 
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in wild coffee species by fast and accurate UHPLC-DAD analyses using authentic standards 20 

previously synthetized, is reported.  21 

 22 
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1. Introduction 33 

Chlorogenic acids (CGAs) are naturally occurring esters formed between (-)-quinic acid and different 34 

trans-cinnamic acids (such as caffeic, ferulic and p-coumaric acid) and since quinic acid possesses 35 

four hydroxyl groups, a great variety of chlorogenic acid isomers can be formed.  In facts, in addition 36 

to monoesters, a wide range of di- and tri-esters with the same or different cinnamic acids is known 37 

(Clifford, 1985).  From a functional point of view, CGAs are plants secondary metabolites which 38 

have been suggested to be involved in the defense mechanism against environmental aggressions 39 

(Farah & Donangelo, 2006). 40 

In the last few years, more than 80 chlorogenic acids have been isolated and identified in coffee.  41 

From a quantitative point of view, caffeoylquinic acids (CQAs) monoesters  with the hydroxyl groups 42 

at C-3, C-4 and C-5 of the quinic ring esterified with caffeic acid are by far the most abundant, 43 
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reaching together more than 80% of total chlorogenic acids (Perrone, Farah, Donangelo, De Paulis, 44 

& Martin, 2008). So far, no esterification was observed at the C-1 hydroxyl group in coffee species 45 

(Narita & Inouye, 2015). In addition to CQAs isomers, green coffee beans are particularly rich in 46 

other classes of chlorogenic acid compounds including  dicaffeoylquinic acids (diCQAs), mono-47 

feruloylquinic acids (FQAs) and pCoQAs (Figure 1). (Farah & Donangelo, 2006) Since coffee beans 48 

represent an important dietary source (Tajik, Tajik, Mack & Enck, 2017) of these compounds several 49 

investigations on coffee composition regarding CQAs, diCQAs and FQAs have been reported in the 50 

literature. (Perrone, Farah, Donangelo, De Paulis, & Martin, 2008) (Farah & Donangelo, 2006) These 51 

polyphenols have recently attracted the attention of several Research groups also thanks to their 52 

biological activity including  antioxidant, anti-inflammatory and antiviral properties (Sinisi et al., 53 

2017). 54 

Moreover, due to their potential beneficial effects, in the last years pharmaceutical and nutrition 55 

industries have paid special attention to determine the CGAs profile  in green coffee extracts proposed 56 

as nutriceuticals (Onakpoya, Terry, & Ernst, 2011). 57 

Although pCoQAs represent relevant intermediates in one of the proposed biochemical pathways of 58 

chlorogenic acid biosynthesis (Koshiro et al., 2007; Clifford et al. 2017a), they are the less studied 59 

class of CGAs. In 2008 Perrone et al. reported a quantitative analysis of pCoQAs in the green beans 60 

of the two most important commercial species C. arabica (commonly known as Arabica) and C. 61 

canephora (commonly known as Robusta), where they were present in the range from 1.0% to 0.60% 62 

respectively of the total chlorogenic acids content, leading this class of chlorogenic acids to be the 63 

fourth in order of quantitative importance. In addition to coffee, other vegetables and fruits including 64 

potatoes, apples and walnuts are relatively rich source of mono-p-coumaroylquinic acids, being sweet 65 

cherries the main dietary source (Aversano et al., 2017; Gutiérrez Ortiz et al., 2018). 66 

However, even in these matrices, investigations focused on pCoQAs are rather scarce and with no 67 

information on the different isomers (Ballistreri et al., 2013; Goulas et al., 2015; Khanizadeh, Tsao, 68 
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Rekika, Yang, & DeEll, 2007; Serra, Duarte, Bronze, & Duarte, 2011), probably due to the lack of 69 

available pCoQAs standards which makes the need of a MS mandatory for their investigation 70 

(Regueiro et al., 2014). Recent advances in UHPLC methods made it possible to develop reliable, 71 

fast and accurate method for CGAs identification and quantification, without the need of an expensive 72 

MS detector but using a more cheap UV detector (Craig, Fields, Liang, Kitts, & Erickson, 2016). 73 

In this study a reliable method for the identification of these minor coffee compounds via UHPLC-74 

DAD was successfully optimized, thanks to the availability of previously synthetized  mono-p-75 

coumaroylquinic acid isomers and used as valuable standards (Gutiérrez Ortiz et al., 2017). Their 76 

quantification was performed by using high purity 5-CQA standard as recommended  in the literature 77 

(Clifford & Madala, 2017b). 78 

During coffee roasting process, CGAs content decreases due to chemical transformations leading to 79 

important volatile aroma compounds and to the formation of their corresponding lactones which 80 

contribute to the bitterness of the final beverage (Farah, de Paulis, Trugo, & Martin, 2005; Frank, 81 

Zehentbauer, & Hofmann, 2006). Depending on the intensity of the thermal treatment, and then on 82 

the roasting degree, chlorogenic acids may be lost up to 95% in dark roasted coffee (Farah & 83 

Donangelo, 2006). Although the detection of pCoQAs could be difficult due to the low amount in the 84 

raw material and the thermal treatment transformations part of the present work was dedicated to 85 

follow the fate of pCoQA isomers during roasting conditions simulation of the two commercially 86 

exploited species, Arabica and Robusta. 87 

Moreover, the present investigation was enlarged to the analyses of other coffee species in order to 88 

quantify both the total pCoQAs content and their isomers composition in green coffee beans. 89 

In spite of more than one hundred coffee species being present in the  world (Davis, Govaerts, 90 

Bridson, & Stoffelen, 2006) both qualitative and quantitative determination of CGAs content have 91 

been focused almost exclusively on the two economically relevant species, Arabica and Robusta 92 

(Farah & Donangelo, 2006; Rodrigues & Bragagnolo, 2013). CGAs profiles of other wild species 93 

reported in the literature include primarily CQAs, diCQAs and only in few cases FQAs (C. Campa, 94 
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Doulbeau, Dussert, Hamon, & Noirot, 2005; Clifford, Williams, & Bridson, 1989; Narita & Inouye, 95 

2015). As already mentioned, the three isomers of pCoQAs were quantified in Arabica and Robusta 96 

species only by Perrone et al. 2008. Although the CGAs content depends on agronomical practices, 97 

geographical origin and soil composition (Farah & Donangelo, 2006), genetic factors are also very 98 

important and the determination of CGAs in wild coffee species might provide useful data to establish 99 

a taxonomic classification based on the chemical patterns. In the present work, the content of pCoQA 100 

isomers has been compared with total CGAs content, calculated as sum of CQA, diCQA, FQA and 101 

pCoQA isomers in commercial lots of C. arabica, C. canephora and C. liberica from different 102 

geographical origins and in eight wild Coffea species: C. liberica, Arabusta coffee (C. arabica L. x 103 

C. canephora Pierre), C. eugenioides, C. sessiliflora, C. congensis, C. pseudozanguebariae, C. 104 

racemosa and C. brevipes.  To our knowledge, this is the first time that all three isomers of this class 105 

of CGAs are quantified in wild coffee species. 106 

The  different stereocenters of the carbon atoms of the quinic acid ring make it necessary  to detail 107 

the numbering of the carbon atoms to avoid possible confusion in the CGAs names already put in 108 

evidence in the literature  (Abrankó & Clifford, 2017). In the present work the IUPAC numbering 109 

system is used (IUPAC, CBM, & IUPAC-IUB, 1976).  110 

 111 

2. Materials and Methods 112 

2.1 Chemicals 113 

5-caffeoylquinic acid (5-CQA) was purchased from Phytolab (Vestenbergsgreuth, Germany). 114 

Acetonitrile and methanol (HPLC grade) were purchased from Sigma –Aldrich S.r.l. (Milano, Italy) 115 

while formic acid was obtained from CARLO ERBA Reagents S.r.l. (Cornaredo, Italy). Standards 116 

not commercially available (p-coumaroylquinic acids) were synthetized according to the literature 117 

(Gutiérrez Ortiz et al., 2017) and their identity was confirmed by 1H and 13C NMR spectroscopy. 3,4 118 

dicaffeoylquinic acid (3,4-diCQA), 3,5-dicaffeoylquinic acid (3,5-diCQA), 4,5-dicaffeoylquinic acid 119 
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(4,5-diCQA) were purchased from Phytolab, feruoylquinic acids (FQAs) were obtained from the 120 

division of organic chemistry and biochemistry at Ruđer Bošković Institute (Zagreb, Croatia) (Dokli, 121 

Navarini, & Hameršak, 2013). Water was treated in a Milli-Q water purification system (Millipore 122 

Academic).  123 

2.2  Samples  124 

A total of twenty seven fresh green coffee samples from different geographical origins and different 125 

species were analyzed.  Commercial wet processed lots of Arabica were from Brazil, Colombia, 126 

Ethiopia (lots 1 and 2), Honduras, India, Yemen (lots 1 and 2) and Guatemala (cultivar laurina); 127 

Commercial wet polished lots of Robusta were from Vietnam and India (parchment AB grade); C. 128 

liberica lots (Liberica lots 1, 2 and 3) were from Indonesia. Non commercial samples are listed in 129 

Table 1. Wild species from CATIE were cultivated and post-harvest treated in Turrialba – Costa Rica. 130 

Table 1 – Non commercial samples of green wild coffee species 131 

Coffee species Identification 

code 

Geographical 

origin of 

original 

material 

Notes 

C. liberica - 4 CATIE T.03447 Honduras in parchment 

C. liberica - 5 CATIE T.03475 Ceylon in parchment 

C. liberica - 6  CATIE T.03476 Ceylon in parchment 

Coffea canephora x Coffea 

arabica 

Arabusta - 1 

 

CIRAD 15 French 

Guiana 

wet processed 
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Arabusta - 2 CIRAD 24 French 

Guiana 

wet processed 

C. eugenioides CATIE T.21387 France in parchment 

C. eugenioides - 2 CATIE T.02725 East Africa in parchment 

C. sessiliflora CATIE T.21348 France in parchment 

C. sessiliflora - 2 CATIE T.21345 France in parchment 

C. congensis CATIE T.05241 Portugal in parchment 

C. pseudozanguebariae CATIE T.21352 France in parchment 

C. racemosa  Mozambique wet processed 

C. brevipes CATIE T.21372 France in parchment 

 132 

2.3 Extraction of chlorogenic acids and sample preparation  133 

Green and roasted coffee beans were ground to a fine powder in a mixer ball mill MM400 (Retsch, 134 

Germany) and extraction was performed in duplicate by dynamic heat-assisted water extraction. For 135 

this purpose 1g of powdered green coffee for each species was added to 100 mL of boiling water 136 

(Gutiérrez Ortiz et al., 2018) and the mixture was stirred for 10 min at 200 rpm on a heated plate 137 

(Arex Velp Scientifica) and filtered through qualitative filter paper n.302 (VWR International Srl, 138 

Milano, Italy). The aqueous extract was frozen with liquid nitrogen and freeze dried for 3 days.  139 

For quantification purposes, lyophilized crude material was redissolved in water to afford 140 

concentrations of 30 mg/mL. In order to analyze each compound accurately, every class of 141 

compounds was quantified on a specific diluted solution, because concentration of caffeoylquinic 142 

acids is appreciably higher than other minor compounds, so dilution of 1:2, 1:4 1:10 and 1:20 were 143 

prepared in water and filtered across a nylon filter (pore size 0.2 µm), transferred into a vial and 144 

immediately analyzed by UHPLC-DAD. 145 

2.4 Roasting conditions 146 
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To simulate roasting conditions, green coffee beans of C. arabica and C. canephora were thermally 147 

treated in a thermoblock Thermostatic Dry Bath G-Block (Fratelli Galli, Italy) at 211°C at different 148 

times (0, 3, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40 and 45 minutes). Roasting has been carried out in 149 

duplicate to assess reproducibility. By monitoring the total weight loss, in our experimental set-up 150 

the true roasting conditions were achieved starting from 15 minutes for Arabica and 20 minutes for 151 

Robusta (corresponding to total dehydration) afterward. In this way, we obtained total weight losses 152 

ranging from 11% to 18.5% in order to mimic roasting degree from very light to dark one. Total 153 

weight loss has been calculated as follows: ‘(green bean weight – roasted bean weight)/ green bean 154 

weight x 100’. Extraction and analysis of roasted samples were performed with the same protocol 155 

used for green coffee. 156 

2.5 Analyses of Chlorogenic Acids (CGAs)  157 

Analyses of caffeoylquinic acids (CQAs), dicaffeoylquinic acids (diCQAs), feruloylquinic acids 158 

(FQAs) and p-coumaroylquinic acids (pCoQAs) were performed using a 1290 UHPLC system 159 

(Agilent, Germany), consisting of degasser, quaternary pump, column thermostat and diode array 160 

detector (DAD) operating at 305 nm (specific for pCoQA) and 324 nm. A Kinetex XB-C18 column 161 

2.6 m 100 x 2.1 mm (Phenomenex, USA) was used at 25°C. Solvents were delivered at a total flow 162 

rate of 0.5 mL/min and the volume of injection was 2.0 l. Solvent A was water/formic acid 163 

(1000:0.001 v/v) and solvent B acetonitrile. The gradient profile was from initial 97% of solvent A 164 

to 85% of A in 8 min, then 60% of A until 11min, and a return to 97% A at 12 min to re-equilibrate. 165 

Qualitatively identification of CGAs was achieved by comparison of specific retention times of 166 

standard solutions as recently described for walnut leaves (Gutiérrez Ortiz et al., 2018), additionally 167 

UHPLC/MS analyses were performed to unequivocally identify the investigated analytes comparing 168 

the obtained results to those obtained by Clifford et al. as well as to those observed from diluted pure 169 

standard solutions. (Clifford, Johnston, Knight, & Kuhnert, 2003) ABSciex Triple Quad 4500 170 

detector was coupled to the UHPLC system; MS was operating in negative mode, ionization voltage 171 
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of 4500, desolvation temperature of 350°C and gas flows of GS1 30 and GS2 40.  Fragmentation of 172 

pseudomolecular ion [M-H] ¯ at m/z 337 were found for pCoQAs, yielding a base peak at m/z 163 173 

for 3pCoQA, 174 for 4pCoQA and 191 for 5pCoQA. 174 

Quantitative determination was performed by UHPLC based on the diode array value for peak areas, 175 

using calibration curve of trans-5CQA and converting the dichlorogenic acids quantification with an 176 

extinction relation (factor 0.77) according to the norm method (“DIN 10767 - Analysis of coffee and 177 

coffee products; determination of chlorogenic acids content; HPLC method,” 2015). The total content 178 

of CGAs is expressed as the sum of all identified CGAs, i.e. the three isomers of CQAs, the three 179 

isomers of FQAs, the three isomers of pCoQAs and three diCQAs. Standard stock solutions were 180 

prepared in MeOH:H2O (1:1) at appropriate concentrations and different diluted solutions were 181 

prepared from stock solutions.  182 

Results obtained are given on dry weight basis (dwb) in order to establish clear comparison with data 183 

already reported in the literature and since some samples consisted of a few quantity of seeds a 10% 184 

moisture content was assumed as it has been done before by others authors. (Anthony et al., 1993)  185 

 186 

3. Results and discussion 187 

The lack of authentic polyphenols standards is a big problem in the identification of these compounds 188 

in complex food matrices. In the absence of standards, when liquid chromatography  is used to study 189 

the polyphenol composition, identification by UV-vis spectra scan of individual components and 190 

comparison with published spectra is frequently performed. (Milinović et al., 2016; Mozetič & 191 

Trebše, 2004; Zhang & Hamauzu, 2004) Unfortunately, the spectral characteristics of polyphenols 192 

like chlorogenic acids, even if unique, are not selective. The synthesis of pCoQA isomers, recently 193 

performed by our group (Gutiérrez Ortiz et al., 2017), largely stimulated the present investigation, 194 

aimed at characterizing this class of chlorogenic acid in a high value food matrix such as coffee. In 195 

fact, synthetized and purified 3-, 4- and 5-pCoQA isomers have been used for their identification in 196 
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both green and roasted coffee samples of the present investigation. LC-MS analyses have also been 197 

performed to fully confirm the presence of all isomers in every coffee sample analyzed. As far as 198 

quantification is concerned, 5-caffeoylquinic acid standard has been used according to Clifford and 199 

Madala (2017b).   200 

Calibration curve of 5-CQA showed a good response linearity with a coefficient of correlation (r2) of 201 

0.999. Limit of quantification (LOQ) and limit of detection (LOD) were calculated as 3 times lower 202 

concentration of analyte on signal to noise ratio (LOD) or 10 times lowest concentration of analyte 203 

on signal to noise ratio (LOQ) resulting 0.88 μg/mL for LOQ and 0.26 μg/mL for LOD. 204 

The distribution of  pCoQAs and the total CGAs content, expressed in mg/g, are reported in table 2, 205 

the mean of duplicate analyses are reported with standard deviation in brackets, highlighting a good 206 

reproducibility of the method, being std always less than 10%. 207 

 208 

Table 2 – Quantification of total p-coumaroylquinic acids and total chlorogenic acids (mg/g dwb) 209 

in commercial samples and wild species of green coffee. 210 

Samples pCoQAs (std) Mean  range 

Total CGAs  

(std) 

Mean  range 

C. arabica Brazil 0.73 (0.01)   54.00 (0.28)   

C. arabica Colombia 0.63 (0.01)   65.62 (5.51)   

C. arabica Etiopia - lot 1 0.55 (0.01)   51.92 (3.79)   

C. arabica Etiopia -  lot 2 0.56 (0.01)   56.86 (0.47)   

C. arabica Honduras 0.61 (0.01)   58.28 (1.61)   

C. arabica India 0.70 (0.02)   60.91 (3.80)   

C. arabica Yemen - lot 1 0.77 (0.01)   64.77 (1.32)   

C. arabica Yemen - lot 2 0.93 (0.01)   63.35 (1.84)   

C. arabica var. laurina Guatemala 0.51 (0.01)   61.82 (4.92)   
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C. arabica    0.67 0.55 – 0.93   59.73 51.92-65.62 

C. canephora Vietnam 0.37 (0.01)   57.97 (2.13)   

C. canephora India 0.43 (0.01)   83.95 (4.07)   

C. canephora    0.40 0.37 – 0.43   70.96 57.97-83.95 

C. liberica – lot 1 0.26 (0.01)   52.02 (1.47)   

C. liberica – lot 2 0.80 (0.01)   59.78 (5.77)   

C. liberica – lot 3 0.68 (0.01)   46.64 (0.61)   

C. liberica   0.58  0.26 – 0.80    52.81 46.64 - 59.78 

C. liberica – 4 (wild) 0.29 (0.01)   63.29 (2.49)   

C. liberica – 5 (wild) 0.64 (0.01)   47.09 (0.98)   

C. liberica – 6 (wild) 0.93 (0.01)   47.91 (2.24)   

C. liberica (wild)   0.62 0.29 - 0.93   52.76 47.09 - 63.29 

Arabusta – 1 (wild) 1.03 (0.01)   56.41 (3.27)   

Arabusta – 2 (wild) 1.10 (0.01)   57.45 (1.19)   

Arabusta (wild)   1.07 1.03 - 1.10   56.93 56.41 – 57.45 

C. eugenioides (wild) 0.19 (0.01)   29.54 (0.06)   

C. eugenioides-2 (wild) 0.29 (0.01)   32.56 (2.89)   

C. eugenioides (wild)   0.24 0.19 – 0.29   31.05 29.54 – 32.56 

C. sessiliflora (wild) 2.12 (0.04)   45.38 (2.25)   

C. sessiliflora-2 (wild) 2.24 (0.04)   51.69 (1.52)   

C. sessiliflora (wild)   2.18 2.12 – 2.24   48.54 45.38 – 51.69 

C. congensis (wild) 0.53 (0.01)   66.40 (1.81)   

C. pseudozanguebariae (wild) 0.12 (0.01)   2.13 (0.03)   

C. racemosa (wild) 0.37 (0.01)   62.14 (4.20)   

C. brevipes (wild) 0.25 (0.01)     70.50 (5.15)     

 211 
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In all the analyzed green coffee samples, pCoQAs accounted for an amount lower than 1 mg/g for 212 

commercial samples, reaching a maximum of 2.24 mg/g for wild species, and all the three isomers 213 

were identified (table 4).  5pCoQA is the major compound of the three isomers, as expected (Koshiro 214 

et al., 2007), except in two commercial lots of C. liberica (lot 2 and lot 3) where the 3pCoQA was 215 

the major isomer detected. In the case of commercial lots, we don’t have varietal details, except for 216 

C. arabica var. laurina from Guatemala, however, for Liberica, in view of its very marginal relevance 217 

in the coffee markets and low value, it cannot be excluded that the commercial lots may derived by 218 

blending in the farm different non homogeneous products in terms of varieties, degree of ripeness 219 

and defective beans which may affect the isomers distribution. Even the first commercial lot of 220 

Liberica (lot 1) shows some peculiarity. In particular, differently from the great majority of the 221 

analyzed samples, 5pCoQA is almost equal to 3pCoQA, as observed also in C. canephora from India. 222 

On the contrary, the three Liberica of the wild species showed the usual prevalence of the 5-isomer 223 

leading to a possible genetic origin of the peculiar distribution observed. Unfortunately, the lack of 224 

published data on pCoQAs isomers distribution cannot permit to draw any conclusion on this point. 225 

The total CGAs content for C. canephora is higher (mean value 70.96 mg/g dwb) when compared to 226 

C. Arabica (mean value 59.73 mg/g dwb), as already reported in the literature. Our results are in 227 

accordance with the results obtained by Trugo (1984) where the extraction method was very similar 228 

to the one used in the present work. The same results were obtained by Perrone et al. although a 229 

different extraction procedure was used.  230 

On the contrary the pCoQAs content is higher in Arabica (mean value 0.67 mg/g dwb) than Robusta 231 

(mean value 0.40 mg/g dwb). These findings are in full agreement with previous data reported by 232 

Perrone et al., the only work which reports the total content of pCoQAs (all three isomers are 233 

identified).  Alonso-Salces in 2009 quantified the only 5-pCoQA but the results onìbtained are very 234 

lower than the one we obtained for the only 5-pCOQA, probably due to a different extraction method. 235 

Anyway, the amount of 5-pCoQA in Arabica green coffee beans is confirmed to be higher with 236 
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respect to Robusta. Also Babova et al. reported results on the amount of 5-pCoQA although the 237 

stereochemistry of all compounds analyzed in their work is not specified. Morover the old 238 

nomenclature for chlorogenic acids is used and the pCoQA is not defined. We can assume that the 239 

only stereoisomer they obtained was the 5-pCoQA and results were similar to the ones obtained by 240 

Salces et al. It must be again underlined that different methods of extractions were used so results can 241 

not be compared with our results. Babova et al. used a further different method of extraction (a 242 

solution of 50% v/v ethanol:water by maceration in the dark for 7 days, by shaking samples twice a 243 

day). 244 

To our knowledge, no pCoQAs quantitative data have been reported in the literature for the other 245 

wild coffee species. For the latter, C. pseudozanguebariae is characterized by the lowest pCoQAs 246 

content (0.12 mg/g) whereas C. sessiliflora is by far the richest source of pCoQAs (2.18 mg/g). 247 

However, considering the distribution of the different classes of chlorogenic acids with respect to the 248 

total CGAs amount (2.13 ± 0.03 mg/g), C. pseudozanguebariae is the Coffea species showing the 249 

most relevant contribution of the pCoQA class (0.12 mg/g), which is present in the relative percentage 250 

of 5.6%. C. sessiliflora is the second Coffea specie with a relative content of pCoQAs of about 4.5%. 251 

In general, it seems that the pCoQAs relative content with respect to the total amount of CGAs is 252 

inversely proportional to the total CGAs amount, in agreement with the few data published so far 253 

(Perrone et al., 2008). 254 

It is noteworthy that investigations on 5-caffeoylquinic acid biosynthesis in coffee plant put in 255 

evidence a route involving direct 3’-hydroxylation of 5-p-coumaroylquinic acid  and the subsequent 256 

role played by 5-pCoQA as a transient intermediate rapidly converted to downstream compound.  257 

(Koshiro et al., 2007; Lepelley et al., 2007). This view is consistent with the low amount of p-258 

coumaroylquinic acids observed, up to now, in all coffee samples. In studies regarding chlorogenic 259 

acid biosynthesis in globe artichoke (Cynara cardunculus L), the low concentration of p-260 

coumaroylquinic acid detected in all samples studied, has been ascribed to the transient intermediate 261 
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nature of this compound, within the pathway for the biosynthesis of 5-caffeoylquinic acid where the 262 

p-coumaroyl ester 3’-hydoxylase catalyzes the last step (Comino et al., 2007). In coffee, an alternative 263 

pathway has also been proposed, and in particular, the p-coumaric acid coming from phenylalanine 264 

through cinnamic acid, instead to lead to pCoQA, is converted to caffeic acid leading to 5-CQA by 265 

its trans-esterification with quinic acid through the formation of caffeoyl-CoA (Koshiro et al., 2007). 266 

In view of the different pCoQAs contribution to total CGAs observed in the wild coffee species, it 267 

cannot be excluded a priori that the chlorogenic acid biosynthesis in coffee could follow different 268 

routes depending on genotype. Similar hypothesis has been already formulated in discussing CGA 269 

evolution during grain development of C. canephora when compared to the wild species C. 270 

pseudozanguebariae (Lepelley et al., 2007). 271 

 The total CGAs contents of the cultivated species of C. arabica and C. canephora were between 52 272 

– 66 mg/g on dry matter  basis and 58 – 84 mg/g on dry matter basis respectively, in full agreement 273 

with values extensively reported in the literature (Farah et al., 2005; Monteiro & Farah, 2012), 274 

confirming a significant difference between these two main commercial species (table 2). The 275 

difference is even more pronounced for wild species. In fact, an average total CGA content of wild 276 

C. arabica and wild C. canephora equal to 41 and 113 mg/g, respectively, has been reported (Campa, 277 

Rakotomalala, Kochko, & Hamon, 2008; Farah & Donangelo, 2006). 278 

Results obtained for C. liberica, with a range of determined total CGAs between 47 mg/g and 64 279 

mg/g, put this specie similar to the Arabica one.  280 

The variability inside the same species may depend on the geographical origin and then on the 281 

agronomical practices, as  reported in the literature (Babova, Occhipinti, & Maffei, 2016; Narita & 282 

Inouye, 2015) but many other factors can affect the chemical composition such as edaphoclimatic 283 

circumstances, annual variations, ripening, storage and method of analysis. In the present work, we 284 

focused on the influence of the geographical origin only for the Arabica samples, being the most 285 



15 
 

valuable product in the coffee sector, but our data proved that the environmental factor was not 286 

relevant.  Similar picture has been drawn by other authors (Babova et al., 2016; Kuhnert et al., 2011). 287 

In the case of wild coffee species, our values are in line with data reported by Anthony et al., 288 

(Anthony, Clifford, & Noirot, 1993) except for Arabusta, C. eugeniodes and C. sessiliflora which are 289 

lower than expected on the basis of the literature. However, it has to be taken in mind that the scarce 290 

amount of available data and the low number of samples analyzed so far (including differences in the 291 

source and degree of ripeness of seeds and/or analytical procedures), does not permit to draw any 292 

general conclusion. In all cases, the present investigation provide valuable quantitative data on a 293 

neglected class of coffee chlorogenic acid isomers.  294 

Comparing the total CGAs content of all analyzed wild coffee species, C. brevipes and C. congensis 295 

are the two species with the higher content of total CGA while C. liberica, C. racemosa and Arabusta 296 

have a similar content of total CGA.  C. eugenioides and C. sessiliflora show a lower content of CGAs 297 

with respect to the other wild species.   In the case of C. eugenioides, even if our average total CGAs 298 

content is lower than expected, it has to be evidenced that it is considered a low accumulating 299 

chlorogenic acids coffee specie (Campa et al., 2008). C. pseudozanguebariae is confirmed to be the 300 

wild species with the lower total CGAs content (0.21%).  301 

It is interesting to observe that, in almost all samples analyzed, the CGAs data of this study are within 302 

the range of the ones reported in the literature (Table 3), perhaps the only exceptions are those 303 

reported by Anthony et al. 1993 when they analyzed germplasm originating mainly from Africa 304 

(Côte-d'Ivoire, Madagascar, Tanzania) and Brazil. 305 

Table 3 - Current data and literature values for total CGAs (% w/w dmb) in commercial and wild 306 

Coffea Spp. 307 

Coffea species 

Total CGAs 

Current data Literature data Ref 

% dry matter   % dry matter  
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C. arabica  5.20 – 6.70 4.05a–7.85b 

a(Narita & Inouye, 2015) 

b(Campa et al., 2008)  

C. canephora  5.80 – 8.40 5.19a-14.4c 

a(Narita & Inouye, 2015) 

c(Campa et al., 2005) 

C. liberica 4.66 – 6.41 3.29d-10.7c 

d(Martinez, Clemente, Lacerda, Neves, & 

Pedrosa, 2014)  

c(Campa et al., 2005) 

Arabusta 5.64 – 5.75 7.23-8.28e e(Clifford, 1985)  

C. eugenioides 2.95 – 3.26 4.53-6.27f 

f(Anthony et al., 1993)  

  

C. sessiliflora 4.54 – 5.17 5.61-9.93f 

f(Anthony et al., 1993) 

 

C. congensis 6.64 4.86d-8.77c 

c(Campa et al., 2005)  

d(Martinez et al., 2014)  

C. pseudozanguebariae 0.21 0.87-1.75f 

f(Anthony et al., 1993) 

 

C. racemosa 6.21 4.78c-6.03e 

c(Campa et al., 2005)e  

e(Clifford, 1985)   

C. brevipes  7.05 6.41a-12.3c 

a(Narita & Inouye, 2015) 

c(Campa et al., 2005) 

 308 

Table 4 – Distribution of pCoQAs isomers expressed as mg/100g dwb (standard deviation) 309 

 3-pCoQA 4-pCoQA 5-pCoQA 

C. arabica Brazil 7.8 (0.3) 11.8 (0.1) 53.5 (0.8) 

C. arabica Colombia 6.8 (0.1) 6.4 (0.1) 49.7 (0.2) 

C. arabica Etiopia – lot 1 3.2 (0.1) 4.4 (0.1) 47.4 (0.7) 

C. arabica Etiopia – lot 2 3.6 (0.4) 4.7 (0.1) 47.9 (0.2) 
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C. arabica Honduras 7.5 (0.2) 8.7 (0.1) 45.1 (1.0) 

C. arabica India 8.5 (0.3) 9.8 (0.3) 51.5 (1.0) 

C. arabica Yemen – lot 1 8.8 (0.1) 9.4 (0.1) 58.4 (0.6) 

C. arabica Yemen – lot 2 7.7 (0.7) 6.9 (0.1) 78.6 (0.7) 

C. arabica var. laurina 4.9 (0.1) 6.8 (0.1) 39.0 (0.1) 

C. canephora Vietnam 3.9 (0.4) 6.3 (0.1) 26.8 (0.1) 

C. canephora India 19.7 (0.1) 6.1 (0.1 16.9 (0.2) 

C. liberica – lot 1 9.5 (0.1) 3.1 (0.1) 13.7 (0.6) 

C. liberica – lot 2 55.3 (0.4) 3.1 (0.1) 21.4 (0.2) 

C. liberica – lot 3 48.0 (0.1) 2.6 (0.1) 17.1 (0.1) 

C. liberica – 4 5.1 (0.1) 2.6 (0.1) 21.1 (0.4) 

C. liberica – 5 15.3 (0.2) 17.8 (0.1) 30.8 (0.3) 

C. liberica – 6 8.5 (0.1) 18.1 (0.1) 66.3 (0.1) 

Arabusta – 1 18.1 (0.2) 17.7 (0.2) 67.2 (0.5) 

Arabusta –  2 19.1 (0.1) 2.4 (0.1) 72.3 (0.1) 

C. eugenioides  2.4 (0.1) 2.7 (0.1) 14.0 (0.1) 

C. eugenioides –  2 7.1 (0.1) 1.6 (0.1) 20.0 (0.1) 

C. sessiliflora 12.2 (0.1) 23.3 (0.2) 176.3 (4.1) 

C. sessiliflora –  2 13.8 (0.1) 26.2 (0.1) 184.3 (4.3) 

C. congensis 10.4 (0.1) 9.0 (0.1) 34.0 (1.2) 

C. pseudozanguebariae 0.5 (0.1) 1.5 (0.1) 10.0 (0.1) 

C. racemosa 8.6 (0.1) 9.6 (0.1) 19.0 (0.1) 

C. brevipes 3.8 (0.1) 2.9 (0.1) 18.2 (0.1) 

 310 

Roasted coffee beans 311 
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It is well known that during coffee roasting, chlorogenic acids are partially degraded because of 312 

pyrolysis, generating other derivatives which are remarkably important in the development of coffee 313 

aroma.  At the same time, by a condensation process, phenolic lactones are formed, which contribute 314 

to the bitter taste of the bevarage. The observed loss of chlorogenic acid during roasting (up to 95% 315 

in dark roasted coffee), which has been extensively reported (Farah et al., 2005; Farah & Donangelo, 316 

2006; Trugo & Macrae, 1984), is a consequence of the thermal degradation, which starts with 317 

isomerization and epimerization processes in the initial roasting stages, followed by lactonization and 318 

degradation reactions in the later stages. The effect of the roasting process on pCoQAs isomers 319 

content in coffee has only been investigated on two different cultivars of C. arabica and one cultivar 320 

of C. canephora from Brazil by Perrone et al. 2008. In addition to this study, no other data focused 321 

on pCoQAs fate during coffee roasting have been published as far as we know. 322 

In order to provide useful further data, and in view of the economic importance of Arabica and 323 

Robusta coffee species, we selected two commercial samples (Arabica from Brazil and Robusta from 324 

Vietnam) to carry out a preliminary exploration on the degradation of pCoQAs induced by thermal 325 

treatments mimicking industrial roasting process. In the case of Arabica, the chosen roasting time 326 

conditions led to the following total weight loss: 11.1%, 13.2%, 14.1%, 15.3%, 15.5%, 16.6% and 327 

16.3% whereas for Robusta, 11.1%, 12.6%, 13.5%, 14.5%, 15.4%, and 18.5%. It has to be stressed 328 

that total weight loss around 15% are typical of medium roasting degree, below and above this value, 329 

roasting degree  is known as light and dark, respectively. In figure 2, where the pCoQA isomers 330 

content during roasting time evolution is reported, the overall and progressive decrease from light to 331 

dark roasting degree is evident, as expected. Of the three isomers present, 5-pCoQA is clearly less 332 

thermally stable than both 3-pCoQA and 4-pCoQA.  However, the isomers’ profile is somewhat 333 

different depending on botanical species. In the case of Robusta sample, by considering the total 334 

pCoQAs content it may be calculated that 1% loss of dry weight induced an average of 2% total 335 

pCoQAs loss, whereas, in the case of Arabica, the average total pCoQAs loss, for 1% of dry weight 336 
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loss, was 4.2%. In spite of both the different roasting conditions and the experimental set up, these 337 

findings are in good agreement with those of the previous study, particularly for Arabica.  In fact, in 338 

the range of roasting degree similar to that of the present investigation,  Perrone et al., found 4.8% 339 

and 5.3% of average pCoQAs losses for every 1% loss of dry weight for C. arabica cv. Mundo Novo 340 

and C. arabica cv. Catuaì Vermelho, respectively. Regarding C. canephora cv. Conillon, 5.3% of 341 

average pCoQAs losses for every 1% loss of dry weight was reported putting in evidence a very 342 

similar behavior between Arabica and Robusta, which was not confirmed by the present data. 343 

We also analyzed the degradation process of CQAs during roasting time in Arabica as reported in fig. 344 

1S (see supplementary material) to confirm the data obtained by Perrone et al. Since they observed 345 

an enhancement of the values of 3-CQA and 4-CQA at the beginning of roasting we decided to 346 

analyze our roasting at shorter time. We also noticed a decrease of the amount of 5-CQA and a 347 

simultaneous increase of the amount of both 3-CQA and 4-CQA. This evidence may suggest the 348 

occurrence of an acyl transfer from 5-CQA to the other two isomers. The acyl migration was already 349 

observed by Deshpande et al. (2014) but in completely different conditions. In the work of Deshpande 350 

et al. acyl migration was studied in basic hydrolytic conditions and by thermal treatment without 351 

solvent and different results were obtained: 5-CQA resulted stable after thermal treatment while acyl 352 

migration was observed with basic hydrolytic treatment. 353 

It has to be highlighted that we could detect and quantify pCoQA isomers in both botanical species, 354 

even at the higher total weight loss, corresponding to a dark roasting degree while in previous works 355 

reported in the literature this was not possible. This discrepancy may reflect both the different sample 356 

preparation and the different analytical procedure adopted in the present work. 357 

4. Conclusions  358 

pCoQA isomers profile was determined in a variety of commercial lots  of green coffee samples from 359 

different geographical origins belonging to the three  economically exploited botanical species C. 360 

arabica, C. canephora and C. liberica and, for the first time, in several different wild species 361 
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belonging to the Eucoffea section. Total CGAs contents were also quantified to make possible the 362 

estimation of the contribution of pCoQAs to the most important class of coffee polyphenols. In 363 

addition, to confirm the higher amount of pCoQAs in Arabica than in Robusta commercial lots, the 364 

characterization of the wild coffee species evidenced a more relevant contribution of pCoQAs to the 365 

total CGAs content in botanical species accumulating low amount of chlorogenic acids such as C. 366 

pseudozanguebariae.  C. sessiliflora proved to be the richest source of pCoQAs among the different 367 

analyzed wild coffee species. The low amount of pCoQAs in coffee beans may reflect the role played 368 

by these isomers, particularly 5-pCoQA, as intermediate in one of the route proposed for the 369 

biosynthesis of the most abundant coffee chlorogenic acid (5-CQA).  In the case of Arabica 370 

commercial lots, the observed intraspecific total CGAs variability is not related to the geographical 371 

origin. Furthermore, the effect of roasting conditions on pCoQAs, evaluated in two selected samples 372 

belonging to commercial species, was also preliminary explored. Mono-p-coumaroylquinic acids 373 

considerably decreased with increasing of the roasting degree as already reported. However, the 374 

thermal stability of this class of chlorogenic acids seems to be affected by the in-bean local 375 

environment of the two investigated botanical species. In particular, when compared to Arabica, 376 

pCoQAs in Robusta sample showed a smaller tendency to degrade with possible implications in the 377 

aroma development. This finding, however, should be confirmed by enlarging the screening to a 378 

wider number of samples. In perspective, we believe that it is necessary to further investigate the role 379 

played by pCoQAs as aroma precursors, as bioactive coffee compounds or as chlorogenic acids 380 

biosynthesis intermediates. The whole set of experimental data highlights the need to deepen the 381 

knowledge on neglected classes of coffee chlorogenic acids. 382 
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Figure 1. Chemical structures of the hydroxycinnamic acid derivatives: 3-p-coumaroylquinic acid 531 

(3-pCoQA) 1; 4-p-coumaroylquinic acid (4-pCoQA) 2; 5-p-coumaroylquinic acid (5-pCoQA) 3; 3-532 

caffeoylquinic acid (3-CQA) 4; 4-caffeoylquinic acid (4-CQA) 5;  5-caffeoylquinic acid (5-CQA) 6; 533 

3-feruloylquinic acid (3-FQA) 7; 4-feruloylquinic acid (4-FQA) 8; 5-feruloylquinic acid (5-FQA) 9; 534 

3,4-dicaffeoylquinic acid (3,4-diCQA) 10; 3,5-dicaffeoylquinic acid (3,5-diCQA) 11; 4,5-535 
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dicaffeoylquinic acid (4,5-diCQA) 12; p-coumaric acid (p-CoA) 13; caffeic acid (CA) 14; ferulic acid 536 

(FA) 15. 537 

 538 

Figure 2 – Different isomers of pCoQAs content during roasting 539 
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