Research Paper

Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan

Hawas Khana, Muhammad Shafiqueb,⇑, Muhammad A. Khana, Mian A. Bachab, Safeer U. Shahb, Chiara Calligarisc

a Karakorum International University, Gilgit, Pakistan
b National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan
c University of Trieste, Department of Mathematics and Geosciences, Via Weiss 2, Trieste 34128, Italy

\begin{abstract}
The northern Pakistan is attributed with rough terrain, active seismicity, monsoon rains, and therefore hosts to variety of geohazards. Among the geohazards, landslides are the most frequent hazard with devastating impacts on economy and society. However, for most of the northern Pakistan, landslide susceptibility maps are not available which can be used for landslide hazard mitigation. This study aims to develop a remote sensing based landslide inventory, analysing their spatial distribution and develop the landslide susceptibility map. The area, selected for this study is comprised of Haramosh valley, Bagrote valley and some parts of Nagar valley, in the Central Karakoram National Park (CKNP) in Gilgit-Baltistan, northern Pakistan. The SPOT-5 satellite image was used to develop a landslide inventory which was subsequently verified in the field. The landslide causative factors of topographic attributes (slope and aspect), geology, landcover, distances from fault, road and streams were used to evaluate their influence on the spatial distribution of landslides. The study revealed that the distance to road, slope gradient has the significant influence on the spatial distribution of the landslides, followed by the geology. The derived results were used in the Frequency ratio technique to develop a landslide susceptibility map. The developed landslide susceptibility map can be utilized for landslide mitigation in the study area.
\end{abstract}

\section{1. Introduction}

Landslide is a complex geohazard, with devastating impacts on sustainable socio-economic development, in mountainous terrains. Northern Pakistan is one of the most landslide prone regions, which can be attributed to the rugged topography, active seismicity, monsoon rains and anthropogenic activities on unstable slopes (Hewitt, 1998, Derbyshire et al., 2001, Kamp et al., 2008, Shafique et al., 2016). The province of Gilgit-Baltistan, in northern Pakistan, is frequently and severely affected by landslides in the past, and prone to more landslides induced devastations in the future. In the recent past, the Attabad rockslide on 4th January 2010 in the region have killed 19 people, displaced 6000 people, blocked the river Hunza for five months that leads to about 14 km natural lake which still exists, and submerging 19 km of the strategic Karakorum Highway (KKH). Despite the threatening landslides in the region, the landslide susceptibility maps are not available for the most of the area, which can be used for landslide hazard assessment and mitigation.

Satellite images and aerial photos with extensive spatial and repetitive coverage, are effectively used in Geographic Information System (GIS) for landslide detection, monitoring and susceptibility assessment (Weissel and Stark, 2001, Chen et al., 2016, Shafique et al., 2016, Wang and Li, 2017)). Landslide inventory is often developed from satellite images, however; the utilized images shall comply with the criteria proposed by Harp et al. (2011). Satellite images such as the Landsat, ASTER and Sentinel are available free of costs with global coverage and therefore can be effectively utilized to develop landslide inventory on a regional scale. Fine resolution images such as the IKONOS, QuickBird, SPOT and WorldView are effectively utilized for developing landslide inventory at a local scale, however, their high price, narrow swath width and long revisit time, limit their application for regional scale studies.

\begin{thebibliography}
\end{thebibliography}

Please cite this article as: H. Khan, M. Shafique, M. A. Khan et al., Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences, https://doi.org/10.1016/j.ejrs.2018.03.004

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Landslide inventory map developed from satellite images.}
\end{figure}
The study area is located in one of the most seismically active regions on earth, with active Himalayan ranges in north, Hindu Kush mountain ranges in northwest and Sulaiman mountain ranges in southwest. High seismic hazard in Pakistan and adjacent Indian and Afghanistan regions is due to northward movement of the Indian tectonic plate at a rate of 31 mm/year (Bettinelli et al., 2006) which is subducting beneath the Eurasian continent. This collision of the Indian and Eurasian plates resulted in the development of world highest mountain ranges i.e. Karakoram, Himalaya and Hindu Kush mountain ranges (Sayab and Khan 2010). The combined impact of active tectonics, high seismicity, rough topography, fractured geology, weather and anthropogenic activities on the unstable slopes leads to frequent and devastating landslides in the study area (Fig. 3).

3. Material and methods

3.1. Remote sensing data

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) derived Digital Elevation Model (DEM) with spatial resolution of 30 m, was used to compute terrain slope and aspect for the study area. Landslide inventory and landcover maps were developed from the SPOT-5 imagery (spatial resolution of 2.5 m and acquisition date of 20-September-2013).

3.2. Landslide inventory

Landslide inventory of the study area was developed from the SPOT-5 imagery using visual image classification technique. The mapped landslides, were subsequently verified in the field and the outlines of the landslides were modified accordingly.

3.3. Landslide causative factors

Spatial distribution and intensity of the landslides are significantly controlled by the surrounding topography, geology, tectonic features, weather conditions, landcover and anthropogenic factors. Therefore, evaluating the impact of these causative factors on spatial distribution of the landslides is of significant importance to understand their operating mechanism, and subsequently develop a landslide susceptibility map.

3.3.1. Terrain slope

Terrain slope mainly determine the spatial distribution and intensity of landslides (Shafique et al., 2016). Terrain slope of the study area was computed from the ASTER DEM using the ArcGIS 10.2. It was calculated using a 3 × 3 moving window based on the algorithm of Burrough and McDonell (1998). The derived slope map was subsequently classified in eight classes including <10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70 and >80 (Fig. 6a).

3.3.2. Terrain aspect

Terrain aspect is the slope direction, and because of its significant impact on the vegetation cover, moisture retention and soil strength; it can influence landslide initiation (Garcia-Rodriguez et al., 2008, Basharat et al., 2014). Terrain aspect of the study area was computed from the ASTER DEM, using a 3 × 3 moving window in the ArcGIS 10.2 (Burrough and McDonell, 1998) (Fig. 6b).

3.3.3. Lithology

It is widely accepted that lithological characteristics strongly affect the physical properties, such as strength and permeability of the surface and sub-surface material; and therefore affect the likelihood of land sliding (Kamp et al., 2008). The lithology
together with terrain slope determine the nature and intensity of landslide (Chen et al., 2012, Faraji Sabokbar et al., 2014). Geological map of the study is shown in Fig. 6c after Searle and Khan (1996) (Fig. 6c).

Geology of the Haramosh valley can be discussed in the context of the geology of Nanga Parbat Haramosh massif as described by Misch (1949), Wadia (1961), Butler and Prior (1988), Madin et al. (1989) and Treloar and Coward (1991). It consists of an ancient Orthogneiss complex (the Nanga Parbat Gneiss of Misch, 1949) which has been divided into the Shengus and Iskere gneisses by Madin and Lawrence (1989). These Proterozoic age gneisses have been extensively deformed before Himalayan tectonics. The Kohistan sequence is mainly composed of various types of meta basics such as the Shuta Gabbro (Madin and Lawrence, 1989) together with volcanic rocks and sediments present in the northern edge (Pudsey et al., 2011). Near the confluence of the Indus and Gilgit rivers, the metabasic rocks are cross-cut by a cluster of biotite granite sheets and lamprophyres (Pettersson and Windley, 1985) which are deformed into the Main Mantle Thrust in the Indus Gorge. In the Indus Gorge near Sassi, the Main Mantle Thrust is characterized by large interleaved units derived from the Kohistan and Indian continent sequence which have large discontinuities in their structures and are highly susceptible for landslide.

Geology of the Bagrote Valley, consists of Chalt Group (Searle and Khan, 1996) and is characterized by heterogeneous volcanic and sedimentary rocks, exposed across the valley. In the southern parts of the valley, the contact between the Kohistan arc sequence and Chalt Group is exposed at the Datuchi village. The large number of diorites and granites, which belong to younger igneous phases, intruded into the Chalt group. The association of metasediments with tuffs and basaltic to andesitic lavas crop out in some places of Bagrote Valley. The ultramafic rocks of the Bagrote valley are part of the Dohani-Dasau ultramafic lineament strip. The Chalt group and ultramafic sequence considered as diverse nature are more prone to landslides. In parts of the Nagar valley, the weathering characteristic of Terigeneous Formation, conglomerate and amphibolites have various structure discontinuities and are prone to landslide. Quaternary deposits are exposed in the whole study area and is highly susceptible for land sliding.

3.3.4. Land cover

Land cover has a strong influence on the distribution of landslides, often, forested area have fewer landslides compare to the barren areas. Vegetated land cover with strong root system, provide the mechanical and hydrological effects that often stabilize the slopes (García-Rodríguez et al., 2008). Land cover of the study area was digitized from the acquired SPOT-5 image and...
subsequently verified in the field (Fig. 6d). The landcover of the area was classified in water body, forest and shrub land, barren land, alpine pasture, spare grass, irrigated agricultural land, permanent snow and glacier.

3.3.5. Fault lines
Spatial distribution and nature of fault lines mainly determine the distribution and intensity of co-seismic landslides (Kamp et al., 2008, Lin and Guo, 2008, Peduzzi, 2010). Fault lines of the area, was extracted from the geological map of the area, after Searle and Khan (1996). Distance to the fault was divided into six buffer zones at 50 m intervals, using ArcGIS 10.2. Software (Fig. 6e).

3.3.6. Road network
In mountainous terrain, the construction of communication network including roads and railway, often leads to the destabilization of slope and eventually landsliding (Shafique et al., 2016). To evaluate the impact of road network on the landslides in the study area, the road network was extracted from the acquired SPOT-5 images and was subsequently verified in the field. Subsequently, distance from the road was computed from the road at the interval 100 m using ArcGIS software (Fig. 6f).

3.3.7. Streams network
Streams can play an adverse role in the stability of a slope, by undercutting due to toe erosion and by saturating the slide toe, due to increase in water infiltration (Gorum et al., 2011). To evaluate the impact of the streams, on distribution of the landslides, the stream network for the study area was computed from the ASTER DEM using ArcHydro tools (ESRI, 2017). The streams with accumulation area of more than 20 Km² were extracted. The distance from the streams was divided into six buffer zones with interval of 20 m in ArcGIS software (Fig. 6g).

These developed landslide causative factors were compared with the landslide inventory to evaluate their influence on spatial distribution of landslides and develop a landslide susceptibility map.

3.4. Landslide susceptibility mapping
For landslide susceptibility mapping, it is important to assume that the spatial distribution of landslides are influenced by the landslide causative factors, and that future landslides will occur under the same conditions as the past landslides (Lee and Talib, 2005). In this study, we have used Frequency Ratio (FR) for landslide susceptibility mapping.

3.4.1. Frequency ratio
Understanding the area specific, physical conditions and processes for triggering the landslides is of significant importance to evaluate the probability of landslides. Frequency ratio is a quantitative technique for landslide susceptibility assessment using GIS techniques and spatial data (Bonham-Carter, 1994, Lee and Talib, 2005, Chen et al., 2016, Chen et al., 2016, Ding et al., 2017). The frequency ratio (FR) technique is frequently and effectively used for landslide susceptibility mapping (Yilmaz, 2009, Reis et al., 2012, Umar et al., 2014, Chen et al., 2016, Wu et al., 2016, Wang and Li, 2017). It is based on the quantified association between the landslide inventory and the landslide causative factors (Reis et al., 2012). To obtain the frequency ratio (FR) for each class of the causative factors, a combination has been established between the landslide inventory map and factor map using the Eq. (1) (Mondal and Maiti, 2013).

\[
Fr = \frac{N_{pix}(1) / N_{pix}(2)}{\sum N_{pix}(3) / \sum N_{pix}(4)}
\]

(1)
The number of pixels containing landslide in a class
The total number of pixels of each class in the whole area
The total number of pixels containing landslide
The total number of pixels in the study area

\[\text{LSI} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{N_{\text{pix}}(i)}{N_{\text{pix}}} \right) \]

where Fr is the frequency ratio, and n is the number of selected causative factors.

According to the technique, the ratio is that of the area where the landslides are occurred, to the total area, so that the value of 1 is an average value. If the value is greater than 1, it means the percentage of the landslide is higher than the area and indicate a higher correlation, whereas values lower than 1 indicate a lower correlation (Akgun et al., 2007). The LSI map is reclassified to develop a landslide susceptibility map. The methodology adopted for the study is shown in Fig. 4.

4. Results and discussion

4.1. Landslide inventory

Based on the SPOT-5 images and field visit, 314 landslides were mapped with a total area of 112.53 km² (Fig. 5). Majority of the landslides are complex landslide (Fig. 2d and f). Rock slides in the area are mainly because of the rock discontinuities along joints, fractures, bedding plane and steep terrain gradient. Debris flow are mainly triggered by the heavy rainfall and snow melt. Rotational landslides are mainly associated with the toe erosion and under-cutting of the recent terraces.

4.2. Landslide causative factors

The causative factors used in the study are given in the Fig. 6. The assigned weights to each class of the causative factors is given in the Table 1. The derived weights shows that the terrain slope map (Fig. 6a) has a significant impact on the landslide distribution, which is in agreement with other mountainous areas (Shahabi et al., 2014). Occurrences of landslides increases with increase in terrain gradient, however, weight is reduced for terrain slope of >70°. The lower landslide frequency at the slope angle of >70° (Fig. 7a), is due to the presence of cliff without colluvium cover. The terrain with slope of 50–60° is most prone for the landslides with frequency ratio of 1.23 and the terrain with slope gradient of <10° is least prone to landslides with frequency ratio of 0.37 (Table 1).

The frequency ratio for the aspect map shows that the south-east, east and west facing aspect has highest frequency ratio values (Table 1). The assigned weights shows that the terrain slope map (Fig. 6a) has a significant impact on the landslide distribution, which is in agreement with other mountainous areas (Shahabi et al., 2014). Occurrences of landslides increases with increase in terrain gradient, however, weight is reduced for terrain slope of >70°. The lower landslide frequency at the slope angle of >70° (Fig. 7a), is due to the presence of cliff without colluvium cover. The terrain with slope of 50–60° is most prone for the landslides with frequency ratio of 1.23 and the terrain with slope gradient of <10° is least prone to landslides with frequency ratio of 0.37 (Table 1).

The frequency ratio for the aspect map shows that the south-east, east and west facing aspect has highest frequency ratio values (Table 1). The assigned weights shows that the terrain slope map (Fig. 6a) has a significant impact on the landslide distribution, which is in agreement with other mountainous areas (Shahabi et al., 2014). Occurrences of landslides increases with increase in terrain gradient, however, weight is reduced for terrain slope of >70°. The lower landslide frequency at the slope angle of >70° (Fig. 7a), is due to the presence of cliff without colluvium cover. The terrain with slope of 50–60° is most prone for the landslides with frequency ratio of 1.23 and the terrain with slope gradient of <10° is least prone to landslides with frequency ratio of 0.37 (Table 1).
Methodological Approach

- Road Map
 - Road buffer
- Spot 5 Image (2.5m)
- Landcover
- Landslide Inventory
- AHP, FR and GIS
- Landslide Susceptibility
- Field Visit
- ASTER DEM 30m
- Slope
- Lithology
- Aspect
- Stream
- Stream buffer
- Fault Line
- Geology Map
- Landslide Inventory

Fig. 4. Flowchart of the methodology adopted for the study.

Fig. 5. (a) Landslide inventory in the study area, (b) and (c) magnified portions from the study area, BI and BII are active debris flow in Bagrote Valley, pictures taken during the field visit in June 2016. CI and CII are rotational landslides in Kutwall area Haramosh valley, pictures and CIII is a complex landslide picture taken in the field in June 2016.

Please cite this article as: H. Khan, M. Shafique, M. A. Khan et al., Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences, https://doi.org/10.1016/j.ejrs.2018.03.004
landslides (Table 1). The mapped fault lines have significant influence on the spatial distribution of the landslides. The area in the vicinity of the mapped fault lines shows high frequency ratio (Table 1). In the study area, the road network has the highest influence on the spatial distribution of landslides with highest frequency ratio (Derbyshire et al., 2001). The area in the vicinity of 100 m buffer of the roads, has the highest frequency ratio of 3.85, followed by 3.75 for the buffer of 101–200 m (Table 1). This can be attributed to the fact the uncontrolled blasting and excavation during the road construction on these fragile slopes leads to

Fig. 6. Landslide causative factors used in the study (a) slope, (b) aspect, (c) geology, (d) landcover map, (e) distance to fault, (f) distance to road and (g) distance to stream.
frequent land sliding (Devkota et al., 2013). Among the land covers, the barren land and irrigated agriculture land have the highest frequency ratio with 2.82 and 1.22 respectively (Table 1). As expected, the minimum frequency ratio values were noticed for the forest, shrub land and alpine pasture.

4.3 Landslide susceptibility index map

The derived frequency ratio for the selected causative factors classes, were combined in GIS to develop a LSI map (Fig. 8). The LSI map is reclassified in four classes i.e. low, moderate, high and...
Table 1
Landslide inducing factors classes weights in the study area.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Classes (degree)</th>
<th>Number of Pixel in Class</th>
<th>Number of Pixel in Class % (a)</th>
<th>Number of Landslide Pixel in Class</th>
<th>Number of Landslide Pixel in Class % (b)</th>
<th>Frequency Ratio (FR) (b/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td><10</td>
<td>234908</td>
<td>8.42</td>
<td>4467</td>
<td>3.08</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>10–20</td>
<td>299519</td>
<td>10.73</td>
<td>10374</td>
<td>7.16</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>20–30</td>
<td>383525</td>
<td>13.75</td>
<td>18153</td>
<td>12.52</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>30–40</td>
<td>461865</td>
<td>16.55</td>
<td>26160</td>
<td>18.05</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>40–50</td>
<td>483810</td>
<td>17.34</td>
<td>30756</td>
<td>21.22</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>50–60</td>
<td>441623</td>
<td>15.83</td>
<td>28252</td>
<td>19.49</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>60–70</td>
<td>328439</td>
<td>11.77</td>
<td>19147</td>
<td>13.21</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>>70</td>
<td>156566</td>
<td>5.61</td>
<td>7640</td>
<td>5.27</td>
<td>0.94</td>
</tr>
<tr>
<td>Aspect</td>
<td>North</td>
<td>355314</td>
<td>12.73</td>
<td>11139</td>
<td>7.68</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Northeast</td>
<td>229112</td>
<td>10.73</td>
<td>8407</td>
<td>5.80</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>316538</td>
<td>11.34</td>
<td>22457</td>
<td>15.49</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>Southeast</td>
<td>317753</td>
<td>11.39</td>
<td>22761</td>
<td>15.70</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>335037</td>
<td>12.01</td>
<td>17171</td>
<td>11.85</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Southwest</td>
<td>368225</td>
<td>13.20</td>
<td>17518</td>
<td>12.09</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>West</td>
<td>414583</td>
<td>14.86</td>
<td>26221</td>
<td>18.09</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>Northwest</td>
<td>383346</td>
<td>13.74</td>
<td>19273</td>
<td>13.30</td>
<td>0.96</td>
</tr>
<tr>
<td>Geology</td>
<td>Amphibolites</td>
<td>561</td>
<td>0.02</td>
<td>23</td>
<td>0.02</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>Diorites and granodiorites</td>
<td>7667</td>
<td>0.28</td>
<td>350</td>
<td>0.24</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>Ultramafics</td>
<td>337</td>
<td>0.01</td>
<td>47</td>
<td>0.03</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>Gneiss</td>
<td>13337</td>
<td>0.48</td>
<td>799</td>
<td>0.55</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>Limestone</td>
<td>141</td>
<td>0.01</td>
<td>7</td>
<td>0.01</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Marble</td>
<td>10</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Conglomerate</td>
<td>178</td>
<td>0.01</td>
<td>7</td>
<td>0.01</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>Quaternary deposits</td>
<td>2278</td>
<td>0.08</td>
<td>206</td>
<td>0.14</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>Volcanics</td>
<td>10929</td>
<td>0.39</td>
<td>576</td>
<td>0.40</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>Tertiary sediments</td>
<td>3987</td>
<td>0.14</td>
<td>391</td>
<td>0.27</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>Undifferentiated</td>
<td>204</td>
<td>0.01</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Distance to stream</td>
<td><20</td>
<td>23029</td>
<td>0.83</td>
<td>1075</td>
<td>0.74</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>20–40</td>
<td>22912</td>
<td>0.82</td>
<td>1164</td>
<td>0.80</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>40–60</td>
<td>22355</td>
<td>0.80</td>
<td>1317</td>
<td>0.91</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>60–80</td>
<td>22232</td>
<td>0.80</td>
<td>1571</td>
<td>1.08</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>80–100</td>
<td>21874</td>
<td>0.78</td>
<td>1794</td>
<td>1.24</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>>100</td>
<td>2677951</td>
<td>95.98</td>
<td>138028</td>
<td>95.23</td>
<td>0.99</td>
</tr>
<tr>
<td>Distance to fault</td>
<td><50</td>
<td>30222</td>
<td>1.08</td>
<td>2058</td>
<td>1.42</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>51–100</td>
<td>30035</td>
<td>1.08</td>
<td>2083</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>100–150</td>
<td>30043</td>
<td>1.08</td>
<td>2078</td>
<td>1.43</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>150–200</td>
<td>30021</td>
<td>1.08</td>
<td>2117</td>
<td>1.46</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>200–250</td>
<td>29960</td>
<td>1.07</td>
<td>2134</td>
<td>1.47</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>>250</td>
<td>2636696</td>
<td>94.61</td>
<td>134479</td>
<td>92.78</td>
<td>0.98</td>
</tr>
<tr>
<td>Distance to road</td>
<td><100</td>
<td>55733</td>
<td>2.00</td>
<td>11171</td>
<td>7.71</td>
<td>3.85</td>
</tr>
<tr>
<td></td>
<td>100–200</td>
<td>50590</td>
<td>1.815</td>
<td>9870</td>
<td>6.81</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td>200–300</td>
<td>46503</td>
<td>1.669</td>
<td>9129</td>
<td>6.30</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>300–400</td>
<td>42149</td>
<td>1.512</td>
<td>8218</td>
<td>5.67</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td>400–500</td>
<td>39722</td>
<td>1.425</td>
<td>7284</td>
<td>5.03</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td>>500</td>
<td>2552280</td>
<td>91.579</td>
<td>99277</td>
<td>68.49</td>
<td>0.75</td>
</tr>
<tr>
<td>Landcover</td>
<td>Water Body</td>
<td>21407</td>
<td>0.77</td>
<td>542</td>
<td>0.37</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Forest and shrub land</td>
<td>452452</td>
<td>16.23</td>
<td>21973</td>
<td>15.16</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Barren Land</td>
<td>656714</td>
<td>23.56</td>
<td>96405</td>
<td>66.51</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>Alpine pasture and sparse grass</td>
<td>434876</td>
<td>15.60</td>
<td>17820</td>
<td>12.29</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>Irrigated agricultural land</td>
<td>116871</td>
<td>4.19</td>
<td>7416</td>
<td>5.12</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>Permanent snow</td>
<td>1002486</td>
<td>35.96</td>
<td>219</td>
<td>0.15</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Glacier</td>
<td>102823</td>
<td>3.69</td>
<td>574</td>
<td>0.40</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Fig. 7. Relationship of landslides occurrences with the causative factors. (a) terrain slope (b) terrain aspect, (c) distance to road (d) distance to stream (e) distance to fault, (f) landcover (g) geology.
very high susceptibility classes to develop a landslide susceptibility map for the study area (Fig. 9). The results indicate that 46.75% area falls in moderate class followed by low susceptibility class 35.94% while 13.41% area is recognized as high class and very highly susceptibility class is 3.90%.

Success rate curve is shown in the Fig. 10 which was used to validate the developed landslide susceptibility map (Fig. 9). The success rate curve is generated from the LSI map, shown in Fig. 8. All the index values of each pixel in the LSI map were then calculated. These values were reclassified into 100 classes with the 1% cumulative intervals. The classified map, was then crossed with the landslide inventory map. The validation results shown that 70% pixels are correctly classified as landslide pixels.
In this study, remote sensing and GIS are effectively used to develop a landslide inventory, analysis their spatial distribution and develop a landslide susceptibility map. Based on the visual interpretation of the SPOT-5 image, landslide inventory is developed which is subsequently verified in the field. The comparison of the landslide inventory with the landslide causative factors, showed that the roads and slope gradient are the most influential factors, controlling the spatial distribution of landslides in the area. The fractured and jointed lithology also significantly control on the spatial distribution of landslides. The barren area and irrigated agricultural land is also prone to slope failures in the area. The landslide intensity also increases as approaching to the roads and streams. The derived relationship between the landslide inventory and causative factors are used in the Frequency ratio technique to develop a landslide susceptibility map. The derived landslide susceptibility map, shows that 17.31% of the study area is identified as high to very high susceptible to landslides. The developed landslide susceptibility map can be utilized by the concern agencies to formulate and implement landslide mitigation measures.

Fig. 9. Landslide susceptibility map of the study area.

5. Conclusion

In this study, remote sensing and GIS are effectively used to develop a landslide inventory, analysis their spatial distribution and develop a landslide susceptibility map. Based on the visual interpretation of the SPOT-5 image, landslide inventory is developed which is subsequently verified in the field. The comparison of the landslide inventory with the landslide causative factors, showed that the roads and slope gradient are the most influential factors, controlling the spatial distribution of landslides in the area. The fractured and jointed lithology also significantly control on the spatial distribution of landslides. The barren area and irrigated agricultural land is also prone to slope failures in the area. The landslide intensity also increases as approaching to the roads and streams. The derived relationship between the landslide inventory and causative factors are used in the Frequency ratio technique to develop a landslide susceptibility map. The derived landslide susceptibility map, shows that 17.31% of the study area is identified as high to very high susceptible to landslides. The developed landslide susceptibility map can be utilized by the concern agencies to formulate and implement landslide mitigation measures.

Please cite this article as: H. Khan, M. Shafique, M. A. Khan et al., Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences, https://doi.org/10.1016/j.ejrs.2018.03.004
Fig. 10. Cumulative percentage of study area classified as susceptible (x-axis) in cumulative percent of landslide occurrence (y-axis).

Conflict of interest
None.

Acknowledgement
The authors would like to acknowledge the Karakorum International University, Gilgit-Pakistan and the Pakistan Science Foundation (grant number PSF/NSFC/Earth-KP-UoP (11)) for the financial support of the study.

References

Shahabi, H., Khezri, S., Ahmad, B.B., Hashim, M., 2014. Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models. CATENA 115, 55–70.

