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Abstract—This paper focuses on developing a distributed
leader-following fault-tolerant tracking control scheme for a class
of high-order nonlinear uncertain multi-agent systems. Neural
network based adaptive learning algorithms are developed to
learn unknown fault functions, guaranteeing the system stability
and cooperative tracking even in the presence of multiple simul-
taneous process and actuator faults in the distributed agents.
The time-varying leader’s command is only communicated to
a small portion of follower agents through directed links, and
each follower agent exchanges local measurement information
only with its neighbors through a bidirectional but asymmetric
topology. Adaptive fault-tolerant algorithms are developed for

two cases, i.e., with full-state measurement and with only limited
output measurement, respectively. Under certain assumptions,
the closed-loop stability and asymptotic leader-follower tracking
properties are rigorously established.

Index Terms—Fault-Tolerant Control, Learning Systems,
Multi-Agent Systems, Cooperative Tracking, Nonlinear Uncertain
Systems.

I. INTRODUCTION

Cooperative control of multi-agent systems (MAS) using

distributed consensus algorithms has recently received sig-

nificant attention (see, e.g., [1]–[3] and references therein).

Two types of control problem have been considered, i.e., the

cooperative regulator problem (also known as leaderless con-

sensus) and the cooperative tracking problem. For the regulator

problem, all the agents/nodes are driven to the consensus

equilibrium that is dependent on the initial conditions of the

agents. For the tracking problem, there is a leader agent

acting as a command generator, and all follower agents are

synchronized to track the leader, despite the leader’s command

being received only by a small portion of followers. Since

such distributed MAS need to operate reliably even in the

presence of faults in some agents, the development of fault-

tolerant control (FTC) schemes is a crucial step in achieving

dependable and safe operations.
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Adaptive approximators such as neural networks combined

with learning estimation algorithms are suitable for approxi-

mating unknown nonlinear dynamics or fault functions in the

fault-tolerant control design, thereby enhancing the robustness

and detectability of the fault diagnosis scheme, as well as

improving the capability for fault accommodation. So far, con-

siderable effort has focused on the development of adaptive-

approximator-based leader-following tracking algorithms for

MAS with first-order agent dynamics [4], [5], second-order

dynamics [6]–[8], and high-order dynamics in the Brunovsky

form [9], [10]. On the other hand, limited results are available

on leader-following FTC design for MAS with more general

dynamics. For instance, leader-following tracking algorithms

for MAS with general linear and Lipschitz nonlinear dynamics

have been developed by assuming the absence of faults [11]

or by considering actuator faults [12]–[14]. However, the

agent models in [12]–[14] do not consider process faults,

which are crucial for the safe operation of MAS. Furthermore,

the results in [11]–[14] are based on a critical assumption

that the Laplacian matrix of the communication graph is

symmetric. In practice, the distributed leader-follower FTC

problem naturally requires the consideration of graphs with

an asymmetric Laplacian matrix, which is significantly more

challenging.

This paper presents a distributed adaptive cooperative track-

ing FTC method for accommodating both process and actuator

faults in a class of high-order nonlinear uncertain multi-agent

systems. Neural network based adaptive approximators are

employed in the FTC design, to learn the unknown fault

function and to guarantee the system stability and leader-

following performance in the presence of faults by modi-

fying the feedback control law via parameter adaptation. In

the leader-following topology under consideration, the time-

varying leader’s command is only communicated to a small

subset of follower agents, and each follower agent exchanges

measurement information only with its neighbors through

a bidirectional but asymmetric interconnection topology. It

is worth noting that the asymmetric weights of the graph

under consideration do not assume the critical detail-balanced

condition considered in the literature [15], [16], which signif-

icantly increases the complexity of FTC design for achieving

asymptotic leader-following tracking in the presence of faults.

For instance, the stability analysis methods in [11]–[14], which

utilize the symmetric property of the Laplacian matrix for

undirected graphs, are not applicable. Note that undirected

graphs and the graphs satisfying detail-balanced condition are

special cases of the intercommunication graph considered in

this paper.
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Distributed adaptive FTC schemes for first-order and

second-order multi-agent systems under asymmetric graph

were previously presented in [17] and [18], respectively. This

paper significantly extends these results by considering more

general high-order agent dynamics under bidirectional but

asymmetric communication links among the followers. Specif-

ically, the FTC problem under consideration is investigated for

two cases: (i) with full-state measurement and (ii) with only

limited output measurements. Appropriately chosen Lyapunov

functions are presented to circumvent the technical difficulty

in the design and analysis of the adaptive learning scheme.

The proposed fault-tolerant cooperative tracking algorithms

are developed to achieve asymptotic leader-following tracking

performance even in the presence of multiple process and

actuator faults in distributed agents. The recent conference

paper [19] describes the full-state measurement case with

detailed proof omitted and does not consider the case of the

limited output measurements presented in this paper.

The rest of the paper is organized as follows. Fault-tolerant

leader-follower consensus control of multi-agent systems with

full-state measurements is described in Section II. The closed-

loop stability and consensus performance for multi-agent

systems with partial state measurements is investigated in

Section III. In Section IV, simulation examples are used to

illustrate the effectiveness of the FTC method. Finally, Section

V provides some concluding remarks.

II. DISTRIBUTED FTC: FULL-STATE MEASUREMENTS

A. Distributed Multi-Agent Systems

In this paper, the overall leader-follower system including

the leader is represented by the graph G, which has a fixed

communication topology that is bidirectional but asymmetric

among followers. An example of the distributed FTC archi-

tecture under consideration is shown in Figure 1. As it is

shown, the leader’s command (i.e., the state of node 0) is

only communicated to a small subset of follower agents (only

agent 2 in this example), and each follower agent exchanges

local measurement information only with its neighbors through

an asymmetric bidirectional interconnection topology. It is

assumed that the leader has a directed path to all followers,

which ensures that the information exchange among agents

is sufficient for the team to achieve the desired team goal.

For instance, this condition is required to exclude isolated

followers, as described in [9]. Neural network based adaptive

approximators are employed by the FTC component of each

agent to learn the unknown fault function. The learned fault

function information is utilized by each agent in the control

law (as well as the state estimator in the case of partial state

measurement) to guarantee that the state of each agent tracks

the state of the time-varying leader via parameter adaptation.

Process faults occur due to any undesirable changes in the

behaviors of the system components and therefore affect the

dynamics of the system, whereas actuator faults represent the

discrepancies between the input command of the actuators and

their actual output. Most practical process faults are nonlinear

functions of the system state. For example, a leakage fault in a

thermal system or a chemical process is, in general, a nonlinear

Fig. 1. An example of the distributed FTC architecture

function of the pressure and the temperature. Specifically, we

consider a set of M agents where the dynamics of the ith

agent, i = 1, · · · ,M , is described by the following differential

equation

ẋi = Axi + g(xi) +Bui + βi(t− Tiu)Bθiui

+Dηi(xi, t) + βi(t− Tif )Ffi(xi)
(1)

where xi ∈ ℜn and ui ∈ ℜm are the state and input vector

of the ith agent, respectively. Additionally, g : ℜn 7→ ℜn,

ηi : ℜn × ℜ+ 7→ ℜv , and fi : ℜn 7→ ℜs are smooth

vector fields, A, B, D, and F are matrices with appropriate

dimensions, and the pair (A,B) is stabilizable. Specifically,

the vector fields g and ηi are the known nominal nonlinearity

and unknown modeling uncertainty in the “healthy” dynamics

(in the absence of faults) of the ith agent, respectively.

The terms βi(t − Tif )Ffi(xi) and βi(t − Tiu)Bθiui in

(1) represent the changes in the dynamics of ith agent due

to the occurrence of process and actuator faults, respectively.

Specifically, βi(t− Tif ) and βi(t− Tiu) are the time profiles

of process and actuator faults which occur at some unknown

time Tif and Tiu, respectively. Furthermore, fi(xi) is the

unknown process fault function, and θiui is an actuator fault

represented by partial loss of effectiveness of the actuators.

Specifically, the matrix θi
△
= diag{θi1, · · · , θim}, where each

unknown constant θid ∈ [θ̄id, 0] characterizes the actuator fault

parameter associated with actuator uid, for d = 1, · · · ,m. The

case of θid = 0 corresponds to a healthy actuator, while the

case of θ̄id ≤ θid < 0 implies the actuator is partially faulty,

where the constant θ̄id ∈ (−1, 0) is a lower bound chosen

to maintain the controllability of the distributed agents. In

this paper, the time profile function βi(·) is modeled by a

time-varying function that is zero before fault occurrence (i.e.,

t < Tif for process faults or t < Tiu for actuator faults), and

satisfies 0 < βi ≤ 1 after fault occurrence (i.e., t ≥ Tif for

process faults or t ≥ Tiu for actuator faults). For instance, the

time profile of abrupt faults can be modeled as a step function,

and the time profile of incipient (slowly developing) faults

can be modeled as a drift-type fault or an exponential term

with an unknown fault-evolution rate [20]. Therefore, both

incipient and abrupt faults are considered in this paper. Note

that the system model (1) allows the occurrence of multiple

simultaneous faults in multiple agents.

Without loss of generality, let the leader be identified as
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agent number 0 with a reference state x0 ∈ ℜn satisfying

ẋ0(t) = Ax0 + Bu0 + g(x0), where u0 ∈ ℜm is the control

input. Then, the following assumptions are made:

Assumption 1.1: The leader’s state x0 follows a bounded

unknown reference trajectory, and the control input u0 is

bounded by an unknown constant.

Assumption 1.2: The modeling uncertainty of the “healthy”

agents, represented by ηi(xi, t) in (1), satisfies

|ηi(xi, t)| ≤ ωi η̄i(xi, t) , ∀xi ∈ ℜn (2)

where ωi is an unknown positive constant, and η̄i is a known

bounding function.

Assumption 1.3: The nominal nonlinearity g(xi) in (1) sat-

isfies the following condition: for all xi ∈ ℜn and x̂i ∈ ℜn,

|g(xi)− g(x̂i)| ≤ σ|xi − x̂i| , (3)

where σ is a known constant.

Assumption 1.4: The matrices D and F lie within the range

space of the matrix B, which implies there exist matrices D̄

and F̄ with appropriate dimensions such that

BD̄ = D and BF̄ = F . (4)

As in [9] and [21], Assumption 1.1 is needed to achieve

cooperative tracking control for a time-varying leader. It is

worth noting that the bound on the uncertainty given in

Assumption 1.2 is allowed to be a function of the agent state

xi, which is less restrictive than the constant bounds assumed

in [8]–[10]. The condition given in Assumption 1.3 on the

nominal nonlinearity g(xi) is needed for FTC design as in

[11], [12] and [22]. Note that ηi(xi, t) and fi(xi) are unknown.

Assumption 1.4 provides the so-called matched uncertainty

condition [23], required to ensure the robustness of the FTC

algorithms with respect to faults and modeling uncertainty.

Remark 1: The distributed nonlinear agent model described

by (1) is more general than the high-order agent models

considered in the literature. For instance, a class of Lipschitz

nonlinear agents were considered in [12], where the absence

of modeling uncertainty and process faults were assumed. The

agent model considered in [9] and [10] is assumed to be in

the Brunovsky form, where g(xi) = 0 and B = D = F =
[0, · · · , 0, 1]T . Additionally, agents with linear dynamics and

matching uncertainties (i.e., g = 0, D = F = B) were

considered in [13] under the assumption of undirected graphs,

while unbalanced graphs are considered in this paper. It is

worth noting that all these aforementioned high-order agent

models in the literature satisfy Assumptions 1.1–1.4 described

above.

B. Distributed Fault-Tolerant Control Design

Adaptive approximators such as neural-network models can

be used to approximate the unknown process fault function

fi(xi). Specifically, we consider linearly parametrized network

(e.g., radial-basis-function networks with fixed centers and

variances) described as follows:

f̂i(xi, ϑ̂i) = ϑ̂T
i ϕi(xi) , (5)

where ϕi(·) represents the collective vector of fixed basis

functions, and ϑ̂i are the adjustable weights of the nonlinear

approximator. In the presence of a process fault, f̂i provides

the adaptive structure for approximating the unknown fault

function fi(xi) by adapting the weight vector ϑ̂i(t).

In the presence of process and actuator faults, by adding and

subtracting the term f̂i(xi, ϑi), the system dynamics described

by (1) can be rewritten as

ẋi = Axi + g(xi) +Bui +Bβiθiui +Dηi(xi, t)

+F
[

f̂i(xi, ϑi) + βifi(xi)− f̂i(xi, ϑi)
]

,

where ϑi is the unknown optimal weight matrix [24]. By

defining the residual approximation error for the ith agent as

δi
△
= fi(xi)− f̂i(xi, ϑi), we have

ẋi = Axi + g(xi) +Bui +Bβiθiui +Dηi(xi, t)

+F
[

f̂i(xi, ϑi) + (βi − 1)f̂i(xi, ϑi) + βiδi(xi)
]

. (6)

For each network, the following assumption is made:

Assumption 1.5: for each i = 1, · · · ,M , the neural network

residual approximation error satisfies

|δi(xi)| ≤ αiδ̄i(xi) , ∀xi ∈ ℜn (7)

where δ̄i is a known bounding function, and αi is an unknown

positive constant.

Remark 2: It is worth noting that the bound on the residual

approximation error in the above assumption is allowed to be

a function of the agent state, which is less restrictive than

the constant bound assumed in [9], [10], [13], and [22]. The

bounding functions δ̄i can possibly be obtained by making use

of certain limited knowledge on the fault. In the worst case

scenario when there is no information about the bound on the

residual approximation error, the bound can be considered as

an unknown constant (i.e., δ̄i = 1). Furthermore, based on

the above assumption, the residual error (which may grow

unbounded as xi goes to infinity) is bounded by a known

function δ̄i, which in general will grow unbounded as xi

becomes very large (for example the known function δ̄i may

have terms like x2
i ). The term will appear in the FTC and

will not allow the trajectory to become unbounded due to the

high gain. On the other hand, as xi becomes quite large the

controller output will also become very large possibly reaching

saturation or it may encounter other problems in the presence

of measurement noise.

We let α0
i and κi represent unknown constants defined as

α0
i

△
= sup

t≥Tif

max

{

∣

∣βi(t− Tif )αi

∣

∣,

∣

∣

∣

∣

[

βi(t− Tif )− 1
]

ϑi

∣

∣

∣

∣

}

,

(8)

κi
△
= sup

t≥0
max

{

∣

∣u0 +Kx0

∣

∣,

∣

∣

∣

∣

[

βi(t− Tiu)− 1
]

θi

∣

∣

∣

∣

}

, (9)

where K ∈ ℜm×n is a design gain matrix. Note that the

fault time profile βi satisfies 0 ≤ βi ≤ 1. Then, based

on Assumptions 1.1 and 1.5, the finite constants α0
i and κi,

defined respectively by (8) and (9) always exist.
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Let Ni denote the set of neighbors of agent i. Based on

the system model (6) and the neural network model (5), the

following fault-tolerant controller for the ith agent is chosen:

ui = (Im + θ̂i)
−1ūi (10)

ūi
△
= −ρiB

TP
∑

j∈Ni

bij x̃ij − κ̂i Ūisgn
(

∑

j∈Ni

bijB
TP x̃ij

)

−Kxi − D̄ ω̂i η̄isgn
(

∑

j∈Ni

bijD
TP x̃ij

)

−F̄

[

α̂i∆̄i(xi)sgn
(

∑

j∈Ni

bijF
TP x̃ij

)

+f̂i(xi, ϑ̂i)

]

(11)

ρ̇i = Λ̄i

(

∑

j∈Ni

bijB
TP x̃ij

)T(
∑

j∈Ni

bijB
TP x̃ij

)

(12)

˙̂
ϑih = Γi

(

∑

j∈Ni

bijF
T
h P x̃ij

)

ϕi(xi) (13)

˙̂αi = Υi

∣

∣

∣

∣

∑

j∈Ni

bij F
TP x̃ij

∣

∣

∣

∣

∆̄i(xi) (14)

˙̂
θid = Pθ̄id

{

Γ̄i

∑

j∈Ni

bijB
T
d P x̃ijuid

}

(15)

˙̂κi = Ῡi

∣

∣

∣

∣

∑

j∈Ni

bijB
TP x̃ij

∣

∣

∣

∣

Ūi (16)

˙̂ωi = Λi

∣

∣

∣

∣

∑

j∈Ni

bijD
TP x̃ij

∣

∣

∣

∣

η̄i , (17)

where ρi(t) is a time-varying coupling gain, θ̂i
△
=

diag{θ̂i1, · · · , θ̂im} with θ̂id in (15) being an estimation of the

actuator fault parameter θid, for d = 1, · · · ,m, the projection

operator P restricts θ̂id to the corresponding set [θ̄id, 0], Bd

is the dth column of matrix B, uid is the dth component of

control input ui, Im is a m×m identity matrix, x̃ij
△
= xi−xj ,

for j ∈ Ni, bij are constant design gains defined later in

(23), K ∈ ℜm×n is a design gain matrix chosen to make

Ã
△
= A − BK Hurwitz, κ̂i is an estimation of the unknown

positive constant bound κi described in (9), D̄ and F̄ are given

in Assumption 1.4, f̂i provides the adaptive approximation of

unknown process fault functions (see (5)), ϑ̂ih is an estimation

of the hth column of the neural network optimal weight matrix

ϑi, for h = 1, · · · , s, Fh is the hth column of matrix F ,

∆̄i(xi)
△
= δ̄i(xi) + |ϕi(xi)|, Ūi

△
= 1 + |ui|, α̂i and ω̂i are

estimates of the unknown bounding constants α0
i described in

(8) and ωi in (2), respectively, Γi is a positive definite learning

rate matrix, Λ̄i, Υi, Γ̄i, Ῡi, and Λi are positive learning rate

constants, and sgn(·) is the sign function defined to take zero

value at zero. Furthermore, P is a positive definite design

matrix, which will be defined in Theorem 1.

Remark 3: In the control law (10)–(11), the term

−ρiB
TP

∑

j∈Ni
bij x̃ij guarantees the convergence of coop-

erative tracking error for the ideal case of the autonomous

leader (i.e., u0 = 0) and the absence of faults and mod-

eling uncertainty. The term −κ̂iŪisgn
(
∑

j∈Ni
bijB

TP x̃ij

)

with the adaptive law (16) is designed to guarantee the

robustness of leader-follower tracking with respect to a

time-varying leader with an unknown input, and the term

−D̄ ω̂i η̄isgn
(
∑

j∈Ni
bijD

TP x̃ij

)

with the adaptive law (17)

is designed to achieve the robustness to modeling uncertainty

ηi. The adaptive term (Im+ θ̂i)
−1 in the control law (10) and

the adaptive law (15) are used to compensate for the effect of

actuator faults. The term −F̄ α̂i ∆̄isgn
(
∑

j∈Ni
bijF

TP x̃ij

)

in (11) and the adaptive law (14) are designed to deal with the

neural network residual approximation error. Lastly, the term

f̂i(xi, ϑ̂i) in (11) is the neural-network approximator with the

adaptive law (13) designed to approximate unknown process

fault functions.

C. Stability Analysis

The following Lemmas are needed for the design and

analysis of the distributed FTC algorithms:

Lemma 1: ( [18], Lemma 1) Suppose H ∈ ℜ(M+1)×(M+1)

is the Laplacian matrix of intercommunication graph as if the

communication between the leader and followers is bidirec-

tional. Then, the matrix

Ω
△
= χH +HTχ (18)

is positive semidefinite and has a simple zero eigenvalue

with 1M+1 as its corresponding right eigenvector, where

χ = diag{χ0, χ1, χ2, · · · , χM} is a diagonal matrix consisting

of the elements of the left eigenvector of H associated with the

eigenvalue zero, i.e., HT χ̄ = 0, χ̄ = [χ0, χ1, χ2, · · · , χM ]T ,

and 1M+1 is a (M + 1)× 1 column vector of ones.

Lemma 2: ( [18], Lemma 2) Suppose the Laplacian matrix

H and the diagonal matrix χ, defined in Lemma 1, have the

following decomposition:

H =

[

H0 H12

H21 Ĥ

]

, χ =

[

χ0 0

0M χ̂

]

, (19)

where H0 ∈ ℜ, H12 ∈ ℜ1×M , H21 ∈ ℜM×1, Ĥ ∈ ℜM×M ,

χ0 ∈ ℜ, χ̂ ∈ ℜM×M , and 0M is a M × 1 column vector of

zeros. Then, the matrix

Ψ
△
= χ̂Ĥ+ ĤT χ̂ (20)

is positive definite.

Let us define γ
△
= λmin(Ψ) and ̺

△
= λmax(Ψ), where

λmin(·) and λmax(·) denote the minimum and maximum

eigenvalues, respectively. Note that based on Lemma 2, γ and

̺ are both positive.

Theorem 1: If there exist a symmetric positive definite

matrix P ∈ ℜn×n, and positive constant µ, such that

ÃTP + PÃ+ µP 2 +
σ2

µ
In − 2PBBTP < 0 , (21)

where In is the identity matrix, and σ is the constant defined

in (3). Then, in the presence of actuator and process faults, the

distributed adaptive-approximation-based fault-tolerant con-

troller (10) with controller gains (23) and adaptive laws (12)

– (17) guarantees the following properties:

1) All the signals are uniformly bounded.

2) The leader-follower consensus is achieved asymptoti-

cally, i.e., xi(t) → x0(t) as t → ∞.
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Proof: Using some algebraic manipulations, we can rewrite

(10) as ui = ūi − θ̂iui. Note that (Im + βiθi)ui = ui +
βiθiui = ūi − θ̂iui + βiθiui. By using (11) and substituting

ui into (6), and by using the leader’s dynamics (i.e., ẋ0(t) =
g(x0) + Ax0 + Bu0), the tracking error dynamics are given

by

˙̃xi = Ãx̃i − ρiBBTP
∑

j∈Ni

bij x̃ij + g(xi)− g(x0) +Dηi

−BD̄ω̂iη̄isgn
(

∑

j∈Ni

bijD
TP x̃ij

)

+Bθ̃iui −Bu0

−BKx0 −Bκ̂iŪisgn
(

∑

j∈Ni

bijB
TP x̃ij

)

+ Fϑ̃T
i ϕi

+Fβiδi −BF̄ α̂i ∆̄i(xi)sgn
(

∑

j∈Ni

bijF
TP x̃ij

)

+(βi − 1)F f̂i(xi, ϑi) + (βi − 1)Bθiui , (22)

where x̃i = x̃i0
△
= xi − x0, ϑ̃i

△
= ϑi − ϑ̂i is the network

parameter estimation error associated with the ith agent, and

θ̃i
△
= θi − θ̂i is the actuator fault parameter estimation error.

We choose the following distributed controller gains: for

i = 1, · · · ,M , and j ∈ Ni,

bij =

{

χikij + χjkji , for j 6= 0

χiki0 + χ0k̄i , for j = 0
(23)

where χi is defined in Lemma 1, k̄i is defined in the proof

of Lemma 1, and kij and kji are positive constants denoting

the weights on the intercommunication graph G. Note that the

distributed gains bij given in (23) are the ith row and jth

column entries of Ψ defined in Lemma 2. Therefore, using

(22) and (23) and the definition of Ψ in Lemma 2, we can

represent the collective closed-loop state dynamics as

˙̃x = (IM ⊗ Ã)x̃− (ρ̄Ψ⊗BBTP ) x̃+ g̃ + ξ − ξ̄

+U +∆+ f̃ +̟, (24)

where ⊗ represents the kronecker product, x̃ ∈ ℜnM is the

column stack vector of x̃i, ρ̄ = diag{ρ1, · · · , ρM}, and the

vectors ξ ∈ ℜnM , ξ̄ ∈ ℜnM , g̃ ∈ ℜnM , U ∈ ℜnM , ∆ ∈ ℜnM ,

f̃ ∈ ℜnM , and ̟ ∈ ℜnM are defined as

ξ
△
=

[

(Dη1)
T , · · · , (DηM )T

]T
(25)

g̃
△
=

[

(g(x1)− g(x0))
T , · · · , (g(xM )− g(x0))

T
]T

(26)

U
△
=

[

(BU1)
T , · · · , (BUM )T

]T
(27)

∆
△
=

[

(F∆1)
T , · · · , (F∆M )T

]T
(28)

f̃
△
=

[

(Fϑ̃T
1 ϕ1)

T , · · · , (Fϑ̃T
MϕM )T

]T
(29)

̟
△
=

[

(Bθ̃1u1)
T , · · · , (Bθ̃MuM )T

]T
(30)

ξ̄
△
=

[

(ξ̄1)
T , · · · , (ξ̄M )T

]T
(31)

ξ̄i
△
= Dω̂iη̄isgn

(

∑

j∈Ni

bijD
TP x̃ij

)

+Bκ̂iŪi

·sgn(
∑

j∈Ni

bijB
TP x̃ij)+Fα̂i∆̄isgn(

∑

j∈Ni

bijF
TP x̃ij),

for i = 1, · · · ,M , Ui
△
= −(u0 + Kx0) + (βi − 1)θiui, and

∆i
△
= βiδi + (βi − 1)f̂i. We consider the following Lyapunov

function candidate:

V = x̃T (Ψ⊗ P )x̃+ ϑ̃
T
(Is ⊗ Γ)−1ϑ̃+ ω̃T(Λ)−1ω̃

+α̃T (Υ)−1α̃+ θ̃
T
(Im ⊗ Γ̄)−1θ̃ + κ̃T Ῡ−1κ̃

+ρ̃T(Λ̄)−1ρ̃ , (32)

where P is a positive definite matrix, ϑ̃ = [ ϑ̃
T

1 , · · · , ϑ̃
T

M ]T

is the collective neural network parameter estimation errors

represented by ϑ̃i = [ ϑ̃T
i1, · · · , ϑ̃

T
is ]

T with ϑ̃ih = ϑih− ϑ̂ih for

h = 1, · · · , s, α̃ = [ α̃1, · · · , α̃M ]T , κ̃ = [ κ̃1, · · · , κ̃M ]T , and

ω̃ = [ ω̃1, · · · , ω̃M ]T are the collective bounding parameter

estimation errors defined as α̃i = α0
i − α̂i, κ̃i = κi − κ̂i,

and ω̃i = ωi − ω̂i, respectively, θ̃ = [ θ̃
T

1 , · · · , θ̃
T

M ]T is

the collective actuator fault parameter estimation errors rep-

resented by θ̃i = [ θ̃i1, · · · , θ̃im ]T with θ̃id = θid − θ̂id,

for d = 1, · · · ,m, ρ̃ = [ ρ1 − ρ, · · · , ρM − ρ ]T is the

collective coupling gain estimation errors, ρ is a positive con-

stant, and Γ = diag{Γ1, · · · ,ΓM}, Γ̄ = diag{Γ̄1, · · · , Γ̄M},

Λ = diag{Λ1, · · · ,ΛM}, Υ = diag{Υ1, · · · ,ΥM}, Ῡ =
diag{Ῡ1, · · · , ῩM}, and Λ̄ = diag{Λ̄1, · · · , Λ̄M}, are con-

stant learning rate matrices. Then, the time derivative of the

Lyapunov function (32) along the solution of (24) is

V̇ = x̃T
[

(Ψ⊗ P )(IM ⊗ Ã) + (IM ⊗ Ã)T (Ψ ⊗ P )
]

x̃

− x̃T
[

(Ψ⊗ P )(ρ̄Ψ⊗ P̄ ) + (ρ̄Ψ⊗ P̄ )T (Ψ⊗ P )
]

x̃

+2

{

x̃T (Ψ⊗ P )
[

ξ − ξ̄ + U +∆+ g̃ + f̃ +̟)

+ϑ̃
T
(Is ⊗ Γ)−1 ˙̃ϑ+ ω̃T(Λ)−1 ˙̃ω + α̃T (Υ)−1 ˙̃α

+θ̃
T
(Im ⊗ Γ̄)−1 ˙̃θ + κ̃T (Ῡ)−1 ˙̃κ+ ρ̃T (Λ̄)−1 ˙̃ρ

}

, (33)

where P̄
△
= BBTP . By using the properties that (Ǎ⊗ B̌)T =

ǍT ⊗B̌T , (Ǎ⊗Č)(B̌⊗Ď) = ǍB̌⊗ČĎ, and Ǎ⊗B̌+Ǎ⊗Č =
Ǎ ⊗ (B̌ + Č) for matrices Ǎ, B̌, Č, and Ď of appropriate

dimensions, we have

x̃T
[

(Ψ⊗ P )(IM ⊗ Ã) + (IM ⊗ ÃT )(Ψ⊗ P )
]

x̃

= x̃T
[

Ψ⊗
(

PÃ+ ÃTP
)]

x̃ . (34)

Additionally, as shown in the proof of Theorem 2 in [21], we

can easily show that

−x̃T
[

(Ψ ⊗ P )(ρ̄Ψ⊗ P̄ ) + (ρ̄Ψ⊗ P̄ )T (Ψ ⊗ P )
]

x̃

=−2 x̃T (Ψρ̄Ψ⊗ PBBTP ) x̃

=−2

M
∑

i=1

ρi

(

∑

j∈Ni

bijB
TP x̃ij

)T(
∑

j∈Ni

bijB
TP x̃ij

)

. (35)

Note that based on Lemma 2, ΨT = Ψ. Furthermore, by

using the property that 2âT b̂ ≤ c̄ âT â+ 1
c̄
b̂T b̂ for any positive

constant c̄ and vectors â and b̂, we have

2 x̃T (Ψ ⊗ P ) g̃ = 2 x̃T (Ψ
1

2 ⊗ P )(Ψ
1

2 ⊗ In) g̃

≤ µ x̃T (Ψ ⊗ P 2)x̃+
1

µ
g̃T

(

Ψ⊗ In
)

g̃ , (36)
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where Ψ
1

2 is a positive definite matrix such that (Ψ
1

2 )2 = Ψ,

and µ is a positive constant. Based on (3) given in Assump-

tion 1.3, we have

g̃T
(

Ψ⊗ In
)

g̃ =

M
∑

i=1

g̃Ti

∑

j∈Ni

bij(g̃i − g̃j)

=
1

2

M
∑

i=1

∑

j∈Ni

bij(g̃i − g̃j)
T (g̃i − g̃j)=

1

2

M
∑

i=1

∑

j∈Ni

bij |g̃i − g̃j |
2

≤
1

2

M
∑

i=1

σ2
∑

j∈Ni

bij |x̃i − x̃j |
2 = σ2x̃T

(

Ψ⊗ In
)

x̃ , (37)

where g̃i
△
= g(xi) − g(x0) as defined in (26). Therefore, by

substituting (37) into (36), we have

2 x̃T (Ψ⊗ P ) g̃ ≤ µ x̃T(Ψ⊗ P 2)x̃+
σ2

µ
x̃T

(

Ψ⊗ In
)

x̃ . (38)

Based on (29) and (30), we have

x̃T (Ψ ⊗ P )(f̃ +̟) =

M
∑

i=1

[

∑

j∈Ni

bij x̃
T
ijPFϑ̃T

i ϕi

+
∑

j∈Ni

bij x̃
T
ijPBθ̃iui

]

. (39)

By using (25), (27), (28), and (31), we have

x̃T (Ψ ⊗ P )(ξ − ξ̄ + U +∆)

=

M
∑

i=1

∑

j∈Ni

bij x̃
T
ijP (Dηi +BUi + F∆i − ξ̄i)

=

M
∑

i=1

[

(
∑

j∈Ni

bij D
T P x̃ij)

T ηi − (
∑

j∈Ni

bij D
T P x̃ij)

T ω̂iη̄i

·sgn(
∑

j∈Ni

bijD
TP x̃ij) + (

∑

j∈Ni

bijB
TP x̃ij)

TUi

−(
∑

j∈Ni

bij B
T P x̃ij)

T κ̂iŪisgn(
∑

j∈Ni

bij B
TP x̃ij)

+(
∑

j∈Ni

bij F
T P x̃ij)

T∆i − (
∑

j∈Ni

bij F
T P x̃ij)

T

·α̂i∆̄isgn(
∑

j∈Ni

bij F
TP x̃ij)

]

. (40)

Based on Assumption 1.1, by using (2) and (7) given in

assumptions 1.2 and 1.5, respectively, and the property that

(â)T sgn
(

â
)

≥ |â|, it follows from (40) that

x̃T (Ψ ⊗ P )(ξ − ξ̄ + U +∆)

≤

M
∑

i=1

[

ω̃i

∣

∣

∣

∣

∑

j∈Ni

bij D
TP x̃ij

∣

∣

∣

∣

η̄i+ κ̃i

∣

∣

∣

∣

∑

j∈Ni

bij B
TP x̃ij

∣

∣

∣

∣

Ūi

+ α̃i

∣

∣

∣

∣

∑

j∈Ni

bij F
TP x̃ij

∣

∣

∣

∣

∆̄i

]

. (41)

By using the adaptive law (12), we have

2ρ̃T (Λ̄)−1 ˙̃ρ

= 2

M
∑

i=1

(ρi − ρ)

(

∑

j∈Ni

bijB
TP x̃ij

)T(
∑

j∈Ni

bijB
TP x̃ij

)

= 2

M
∑

i=1

ρi

(

∑

j∈Ni

bijB
TP x̃ij

)T(
∑

j∈Ni

bijB
TP x̃ij

)

−2ρ x̃T (Ψ2 ⊗ PP̄ ) x̃. (42)

Additionally, using the eigenvalue properties of functions of a

square matrix [25], it can be shown that for the positive definite

matrix Ψ, Ψ2−γΨ is positive semidefinite (i.e., Ψ2−γΨ ≥ 0),

where γ is the smallest eigenvalue of the matrix Ψ defined

in theorem 1. Also, for matrices Ě and F̌ , eigenvalues of

the matrix Ě ⊗ F̌ are products of eigenvalues of Ě and F̌

(Theorem 6 in [26]). Thus, for the positive semidefinite matrix

PP̄ , it can be obtained that x̃T
[

(Ψ2 − γΨ) ⊗ PP̄
]

x̃ ≥ 0 or

equivalently x̃T
(

Ψ2 ⊗ PP̄
)

x̃ ≥ γx̃T
(

Ψ ⊗ PP̄
)

x̃. Therefore,

we have

−2ρ x̃T (Ψ2 ⊗ PP̄ ) x̃ ≤ −2ρ γ x̃T (Ψ⊗ PBBTP ) x̃. (43)

Let us define

Qc △
= ÃTP +PÃ+µP 2+

σ2

µ
In− 2ργPBBTP . (44)

Therefore, by substituting (34) – (43) into (33), and by using

the adaptive laws given by (13) – (17), we obtain

V̇ ≤ x̃(Ψ ⊗Qc)x̃ . (45)

Note that since the parameter projection modification can only

make the Lyapunov function derivative more negative, the

stability properties derived for the standard algorithm still hold

[24]. By selecting ρ sufficiently large such that ργ ≥ 1, using

(21), positive definiteness of Ψ due to Lemma 2, and the

property that eigenvalues of the matrix Ψ⊗Qc are products of

eigenvalues of Ψ and Qc (Theorem 6 in [26]), we know V̇ is

negative semidefinite. Thus, we conclude that x̃i, ρi, ϑ̂i, θ̂i, κ̂i,

ω̂i, and α̂i are uniformly bounded. By integrating both sides of

(45), it can be shown that x̃i ∈ L2. Additionally, xi is bounded

because x̃i and the leader’s state x0 are bounded. Therefore,

based on (10), (6), and the smoothness of the function gi,

we have ui ∈ L∞ and ẋi ∈ L∞. Since x̃i ∈ L∞ ∩ L2,
˙̃xi ∈ L∞, using Barbalat’s Lemma [27], x̃ → 0 as t → ∞,

hence concluding the proof.

Remark 4: The condition (21) can be transformed into

standard linear matrix inequalities. Then, a feasible solution to

(21) can be possibly found by using LMI tools. Furthermore,

the sign function used in this paper may possibly create

chattering problems, which could be remedied by using a

smooth approximation of the sign function, for instance, the

hyperbolic tangent function (see, e.g., page 397 in [24]). In

[19] and [28], a continuous adaptive FTC scheme utilizing the

hyperbolic function is presented, guaranteeing the cooperative

tracking error converges to a small neighborhood around zero,

which can be made as small as possible by using suitable

design parameters. Interested readers can refer to Section 5.2

in [28] for more details.
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III. DISTRIBUTED FTC: INPUT-OUTPUT AGENT SYSTEMS

In this section, the results in Section II are extended to a

class of input-output multi-agent systems where only partial

state measurements are available.

A. Distributed Multi-Agent System Model

Consider a set of M agents where the dynamics of the ith

agent, i = 1, · · · ,M , is described by the following differential

equation

ẋi = Axi + g(xi) +Bui + βi(t− Tiu)Bθiui

+Dηi(xi, t) + βi(t− Tif )Ffi(yi)

yi = Cxi ,

(46)

where xi ∈ ℜn , ui ∈ ℜm , and yi ∈ ℜl are the state, input,

and output vector of the ith agent, respectively. Additionally,

g : ℜn 7→ ℜn, ηi : ℜn × ℜ+ 7→ ℜv , and fi : ℜl 7→ ℜs

are smooth vector fields representing the known nonlinearity,

unknown modeling uncertainty, and process fault in the state

dynamics of the ith agent, respectively, A, B, C, D and F

are matrices with appropriate dimensions, and the pairs (A,B)
and (A,C) are stabilizable and detectable, respectively. The

changes in the dynamics of ith agent due to the occurrence

of process and actuator faults in (46) are represented by

βi(t−Tif)Ffi(yi) and βi(t−Tiu)Bθiui, which occur at some

unknown time Tif and Tiu, respectively.

Without loss of generality, let the leader be identified as

agent number 0 with unknown state x0 and a reference output

y0, where ẋ0(t) = g(x0) + Ax0 + Bu0, and y0 = Cx0.

The objective of this section is to design a distributed FTC

scheme which guarantees that the state of ith agent (i.e., xi(t))
should track the state of the time-varying leader (i.e., x0(t)) by

utilizing only local output measurements and state estimation

information exchanged between neighboring agents, even in

the presence of process and actuator faults.

Analogously, the linearly parametrized neural network

model used to estimate the unknown process fault function

fi(yi) is described as follows:

f̂i(yi, ϑ̂i) = ϑ̂T
i ϕi(yi) . (47)

Let us denote the residual approximation error as δi(yi).
Assumptions 1.2 and 1.5 will be modified as follows:

Assumption 2.1: The modeling uncertainty in each local

agent, represented by ηi(xi, t) in (46), satisfies

|ηi(xi, t)| ≤ ωi η̄i(yi, t) , ∀xi ∈ ℜn, ∀yi ∈ ℜl (48)

where η̄i is a known positive bounding function and ωi is an

unknown constant.

Assumption 2.2: For each i = 1, · · · ,M , the network

residual approximation error satisfies

|δi(yi)| ≤ αiδ̄i(yi) , ∀yi ∈ ℜl (49)

where δ̄i is a known positive bounding function, and αi is an

unknown constant.

Note that in Assumptions 2.1 and 2.2, the bounds on modeling

uncertainty and network approximation error are allowed to be

a function of agent outputs, which is less restrictive than the

constant bound considered in [9] and [10].

B. Distributed FTC Design

Since the agent state is not available for control design,

a state estimator is needed for estimating the state. Let θei
represent an unknown constant defined as

θei
△
= sup

t≥Tiu

max

{

∣

∣

∣

∣βi(t− Tiu) θi
∣

∣

∣

∣

}

. (50)

Note that the fault time profile βi(t− Tiu) satisfies 0 < βi ≤
1 for t ≥ Tiu. Therefore, the finite constant θei defined by

(50) always exists. Then, by using (46), the following state

estimator is chosen:

˙̂xi = Ax̂i + g(x̂i) +Bui + Lỹei −Bθ̂ei |ui| sgn
(

GB ỹei
)

−F

[

α̂e
i ∆̄i(yi)sgn

(

F̄TGB ỹei
)

+ f̂e
i (yi, ϑ̂

e
i )

]

−D ω̂e
i η̄isgn(D̄

TGB ỹei ) (51)

ŷi = Cx̂i ,

˙̂
ϑe
ih = Γi

(

F̄T
h GB ỹei

)

ϕe
i (yi) , (52)

˙̂αe
i = Υi

∣

∣F̄TGB ỹei
∣

∣ ∆̄i(yi) , (53)

˙̂ωe
i = Λi

∣

∣D̄TGB ỹei
∣

∣ η̄i(yi, t) , (54)

˙̂
θei = Γ̄i

∣

∣GB ỹei
∣

∣ ·
∣

∣ui

∣

∣ , (55)

where x̂i and ŷi represent the estimated local state and output

variables of the ith agent, respectively, ỹei
△
= yi − ŷi denotes

the output estimation error of the ith agent, D̄ and F̄ are

given in (4), L ∈ ℜn×l is a design gain matrix chosen such

that the matrix Ā
△
= A− LC is Hurwitz, θ̂ei is an estimation

of the actuator fault magnitude parameter θei defined in (50),

f̂e
i = (ϑ̂e

i )
Tϕe

i (yi) provides the adaptive online approximation

of the unknown process fault for the state estimator, ϑ̂e
i is

an estimation of the neural network parameter matrix ϑi, ϑ̂
e
ih

is the hth row of ϑ̂e
i , for h = 1, · · · , s, ϕe

i is the collective

vector of fixed basis functions, F̄h is the hth column of matrix

F̄ , α̂e
i is an estimation of the unknown bounding constant α0

i

described in (8), ω̂e
i is an estimation of the unknown bounding

constant ωi, ∆̄i(yi)
△
= δ̄i(yi) + |ϕi(yi)|, Ūi

△
= 1 + |ui|, Γi

is a positive definite learning rate matrix, Γ̄i, Υi, and Λi

are positive learning rate constants, GB is a design matrix

satisfying

PB = CTGT
B , (56)

and P is a positive definite design matrix to be defined in

Theorem 2.

In the presence of process and actuator faults, by adding and

subtracting the term f̂i(yi, ϑi), and defining the residual ap-

proximation error for the ith agent as δi
△
= fi(yi)− f̂i(yi, ϑi),

the system dynamics described by (46) can be rewritten as

ẋi=Axi + g(xi) +B(Im + βiθi)ui +Dηi(xi, t)

+F
[

f̂i(yi, ϑi) + (βi − 1)f̂i(yi, ϑi) + βiδi(yi)
]

yi =Cxi .

(57)

Then, based on the system model (57), the neural network

model (47), and Assumption 2.2, the adaptive neural controller
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(10)–(17) for input-output systems are adjusted as follows:

ui = (Im + θ̂ci )
−1τi , (58)

τi
△
= −ρBTP

∑

j∈Ni

bij
(

x̂i− x̂j

)

−κ̂iŪi sgn
(

∑

j∈Ni

bijGB ỹcij
)

−Kx̂i− η̄i D̄ ω̂c
i sgn

(

∑

j∈Ni

bijD̄
TGB ỹ

c
ij

)

−F̄
[

α̂c
i ∆̄isgn

(

∑

j∈Ni

bij F̄
TGB ỹcij

)

+ f̂ c
i (yi, ϑ̂

c
i )
]

, (59)

˙̂
ϑc
ih = Γi

(

∑

j∈Ni

bijF̄h
T
GB ỹcij

)

ϕc
i (yi) , (60)

˙̂αc
i = Υi

∣

∣

∣

∣

∑

j∈Ni

bij GF ỹcij

∣

∣

∣

∣

∆̄i(yi) , (61)

˙̂
θcid = Pθ̄id

{

Γ̄i

∑

j∈Ni

bij(GBd ỹ
c
ij)

Tuid

}

, (62)

˙̂κi = Ῡi

∣

∣

∣

∣

∑

j∈Ni

bijGB ỹcij

∣

∣

∣

∣

Ūi , (63)

˙̂ωc
i = Λi

∣

∣

∣

∣

∑

j∈Ni

bijD̄
TGB ỹcij

∣

∣

∣

∣

η̄i(yi, t) , (64)

where ỹcij
△
= yi − yj , θ̂ci = diag{θ̂ci1, · · · , θ̂

c
im} with each

component θ̂cid in (62) being an estimation of the actuator fault

magnitude parameter θid, ρ is a positive design constant, f̂ c
i =

(ϑ̂c
i )

Tϕc
i (yi) provides the adaptive online approximation of the

unknown process fault for the designed fault-tolerant control

algorithm, ϑ̂c
i is an estimation of the neural network parameter

matrix ϑi, ϑ̂
c
ih is the hth row of ϑ̂c

i , for h = 1, · · · , s, ϕc
i is the

collective vector of fixed basis functions, κ̂i is an estimation

of the unknown positive constant bound κi described in (9),

ω̂c
i is an estimation of the unknown positive bounding constant

ωi, GBd is the dth row of matrix GB , and α̂c
i is an estimation

of the unknown bounding constant α0
i described in (8).

C. Stability Analysis

For each agent, by using (57) and (51), the collective state

estimation error dynamics are

˙̃xe = (IM ⊗ Ā) x̃e + g̃e + ξ − ξ̄e + f̃e +∆+ Ue, (65)

where x̃e is the column stack vector of the state estimation

errors x̃e
i

△
= xi − x̂i, the vectors ξ and ∆ are defined in (25)

and (28), and the vectors g̃e ∈ ℜMn, f̃e ∈ ℜMn, Ue ∈ ℜMn,

and ξ̄e ∈ ℜMn are defined as

g̃e
△
=

[

(

g(x1)− g(x̂1)
)T

, · · · ,
(

g(xM )− g(x̂M )
)T

]T

, (66)

f̃e △
=

[

(

F (ϑ̃e
1)

Tϕe
1

)T

, · · · ,
(

F (ϑ̃e
M )Tϕe

M

)T
]T

, (67)

Ue △
=

[

(B β1 θ1 u1)
T , · · · , (B βM θM uM )T

]T
, (68)

ξ̄e
△
=

[

(ξ̄e1)
T , · · · , (ξ̄eM )T

]T
, (69)

ξ̄ei
△
= Dω̂e

i η̄isgn
(

D̄TGB ỹei
)

+ Fα̂e
i ∆̄i(yi)sgn

(

F̄TGB ỹ
e
i

)

+Bθ̂ei |ui| sgn
(

GB ỹei ) ,

for i = 1, · · · ,M , where ϑ̃e
i = ϑi − ϑ̂e

i is the network

parameter estimation error associated with the ith agent.

Additionally, using some algebraic manipulations, we can

rewrite (58) as ui = τi − θ̂iui. Therefore, by using (59) and

(4), and substituting ui into (57), the closed-loop dynamics

are given by

ẋi=g(xi)+Ãxi+BKx̃e
i+Dηi−Dω̂c

i η̄isgn
(

∑

j∈Ni

bijD̄
TGB ỹ

c
ij

)

−ρBBTP
∑

j∈Ni

bij(x̂i− x̂j)−Bκ̂iŪisgn
(

∑

j∈Ni

bijGB ỹcij
)

+F

[

(ϑ̃c
i )

Tϕc
i +βiδi− α̂c

i ∆̄isgn
(

∑

j∈Ni

bij F̄
TGB ỹ

c
ij

)

]

+(βi − 1)F f̂ c
i (yi, ϑi) +Bθ̃ciui + (βi − 1)Bθiui ,

yi=Cxi , (70)

where ϑ̃c
i = ϑi− ϑ̂c

i is the network parameter estimation error

associated with the ith agent, and θ̃ci = θi − θ̂ci is the actuator

fault parameter estimation error corresponding to the ith agent.

Note that the term x̂i− x̂j in (70) can be rewritten as (x̂i−
xi)+(xi−x0)−(x̂j−xj)−(xj−x0). Therefore, by using (23)

and the definition of Ψ in Lemma 2, the collective tracking

error dynamics are given by

˙̃xc = (IM ⊗Ã)x̃c+ρ(Ψ⊗BBTP )x̃e−ρ(Ψ⊗BBTP )x̃c+ g̃

+(IM ⊗BK)x̃e + ξ − ξ̄c + U + f̃ c +∆+̟c , (71)

where x̃c is the column stack vector of tracking errors x̃c
i

△
=

xi − x0, the vectors ξ, g̃, U , and ∆ are defined in (25), (26),

(27), and (28), and the vectors f̃ c ∈ ℜMn, ̟c ∈ ℜMn, and

ξ̄c ∈ ℜMn are defined as

f̃ c △
=

[

(

F (ϑ̃c
1)

Tϕc
1

)T

, · · · ,
(

F (ϑ̃c
M )Tϕc

M

)T
]T

, (72)

̟c △
=

[

(Bθ̃c1u1)
T , · · · , (Bθ̃cMuM )T

]T
, (73)

ξ̄c
△
=

[

(ξ̄c1)
T , · · · , (ξ̄cM )T

]T
, (74)

ξ̄ci
△
= Dω̂c

i η̄isgn
(

∑

j∈Ni

bijD̄
TGB ỹ

c
ij

)

+Bκ̂iŪi

·sgn(
∑

j∈Ni

bijGB ỹ
c
ij)+Fα̂c

i ∆̄isgn(
∑

j∈Ni

bijF̄
TGB ỹ

c
ij),

for i = 1, · · · ,M .

To derive the adaptive algorithm and to investigate analyt-

ically the stability properties of the closed-loop system, we

consider the following Lyapunov function candidate:

V = (x̃c)T(Ψ ⊗ P )x̃c + (x̃e)T(IM ⊗ P )x̃e + (α̃c)T (Υ)−1α̃c

+(ϑ̃
c
)T(Is ⊗ Γ)−1ϑ̃c + (θ̃

c
)T (Im ⊗ Γ̄)−1θ̃c + (ω̃c)T

·(Λ)−1ω̃c + (ϑ̃
e
)T (Is ⊗ Γ)−1ϑ̃

e
+ (α̃e)T (Υ)−1α̃e

+(θ̃e)T (Γ̄)−1θ̃e + (ω̃e)T (Λ)−1ω̃e + κ̃T (Ῡ)−1κ̃ , (75)

where ϑ̃
c

= [ (ϑ̃
c

1)
T , · · · , (ϑ̃

c

M )T ]T and ϑ̃
e

=
[ (ϑ̃

e

1)
T , · · · , (ϑ̃

e

M )T ]T are the collective neural

network parameter estimation errors represented

by ϑ̃
c

i = [ (ϑi1 − ϑ̂c
i1)

T , · · · , (ϑis − ϑ̂c
is)

T ]T and

ϑ̃
e

i = [ (ϑi1 − ϑ̂e
i1)

T , · · · , (ϑis − ϑ̂e
is)

T ]T , respectively,

α̃c = [ α̃c
1, · · · , α̃

c
M ]T , α̃e = [ α̃e

1, · · · , α̃
e
M ]T ,
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ω̃c = [ ω̃c
1, · · · , ω̃

c
M ]T , ω̃e = [ ω̃e

1, · · · , ω̃
e
M ]T , and

κ̃ = [ κ̃1, · · · , κ̃M ]T are the collective bounding parameter

estimation errors defined as α̃c
i = α0

i − α̂c
i , α̃e

i = α0
i − α̂e

i ,

ω̃c
i = ωi − ω̂c

i , ω̃e
i = ωi − ω̂e

i , and κ̃i = κi − κ̂i,

respectively, θ̃
c
= [ θ̃

c

1, · · · , θ̃
c

M ]T and θ̃e are the collective

actuator fault parameter estimation errors represented by

θ̃
c

i = [ θi1 − θ̂ci1, · · · , θim − θ̂cim ]T and θ̃ei = θei − θ̂ei ,

respectively, and Γ, Γ̄, Υ, Ῡ, and Λ are constant learning rate

matrices defined in (32).

Then, the time derivative of the Lyapunov function (75)

along the solution of (71) and (65) is given by

V̇ = (x̃c)T
[

(Ψ⊗ P )(IM ⊗ Ã) + (IM ⊗ Ã)T (Ψ ⊗ P )
]

x̃c

−ρ (x̃c)T
[

(Ψ⊗ P )(Ψ ⊗ P̄ ) + (Ψ ⊗ P̄ )T (Ψ⊗ P )
]

x̃c

+(x̃e)T
[

(IM ⊗P )(IM ⊗Ā)+(IM⊗Ā)T (IM ⊗P )
]

x̃e

+2

{

(x̃c)T (Ψ ⊗ P )
(

ρ (Ψ⊗ P̄ )x̃e + (IM ⊗BK)x̃e
)

+(x̃c)T (Ψ⊗ P )
[

g̃ + f̃ c +̟c + ξ − ξ̄c + U +∆
]

+(x̃e)T (IM ⊗ P )
[

g̃e +̟e + f̃e + ξ − ξ̄e +∆+ Ue
]

+(ϑ̃
c
)T(Is ⊗ Γ)−1ϑ̃c + (θ̃

c
)T (Im ⊗ Γ̄)−1θ̃c

+(α̃c)T (Υ)−1α̃c + (ω̃c)T (Λ)−1ω̃c + (α̃e)T (Υ)−1α̃e

+(θ̃e)T (Γ̄)−1θ̃e + (ω̃e)T (Λ)−1ω̃e + κ̃T (Ῡ)−1κ̃

+(ϑ̃
e
)T (Is ⊗ Γ)−1ϑ̃

e
}

(76)

We have

(x̃e)T
[

(IM ⊗ P )(IM ⊗ Ā) + (IM ⊗ ĀT )(IM ⊗ P )
]

x̃e

= (x̃e)T
[

IM ⊗
(

PĀ+ ĀTP
)]

x̃e , (77)

and

(x̃c)T (Ψ⊗ P )
[

ρ (Ψ⊗ P̄ ) + IM ⊗BK
]

x̃e = (x̃c)TQ x̃e,

(78)

where Q
△
= ρ (Ψ2 ⊗ PP̄ ) + Ψ⊗ PBK . Furthermore, similar

to (38), we obtain

2(x̃e)T (IM ⊗ P ) g̃e

≤µ (x̃e)T(IM ⊗P 2) x̃e+
σ2

µ
(x̃e)T

(

IM ⊗In
)

x̃e. (79)

By using (4), (48) and (49) given in assumptions 1.4,

2.1 and 2.2, respectively, using (56), and the property that

(â)T sgn
(

â
)

≥ |â|, it can be shown that

(x̃c)T (Ψ⊗ P )(ξ − ξ̄c + U +∆)

=

M
∑

i=1

[

(
∑

j∈Ni

bij D̄
TGB C x̃c

ij)
T ηi

−(
∑

j∈Ni

bij D̄
TGB C x̃c

ij)
T ω̂c

i η̄isgn(
∑

j∈Ni

bijD̄
TGB ỹ

c
ij)

−(
∑

j∈Ni

bijGBCx̃c
ij)

TUi − (
∑

j∈Ni

bij GB C x̃c
ij)

T

·κ̂iŪisgn(
∑

j∈Ni

bij GB ỹcij)+(
∑

j∈Ni

bij F̄
TGB C x̃c

ij)
T∆i

−(
∑

j∈Ni

bij F̄
TGB C x̃c

ij)
T α̂c∆̄isgn(

∑

j∈Ni

bijF̄
TGB ỹ

c
ij)

]

≤

M
∑

i=1

[

ω̃c
i

∣

∣

∣

∣

∑

j∈Ni

bij D̄
TGB ỹcij

∣

∣

∣

∣

η̄i+ κ̃i

∣

∣

∣

∣

∑

j∈Ni

bij GB ỹcij

∣

∣

∣

∣

Ūi

+ α̃c
i

∣

∣

∣

∣

∑

j∈Ni

bij F̄
TGB ỹcij

∣

∣

∣

∣

∆̄i

]

, (80)

where x̃c
ij = x̃c

i − x̃c
j = xi − xj . Similarly,

(x̃e)T (IM ⊗ P )(ξ − ξ̄e + Ue +∆)

≤

M
∑

i=1

[

ω̃e
i

∣

∣D̄TGB ỹei
∣

∣η̄i + θ̃ei
∣

∣GB ỹei
∣

∣ · |ui|

+ α̃e
i

∣

∣ F̄TGB ỹei
∣

∣∆̄i

]

. (81)

Let us define

Qe △
= ĀTP + PĀ+ µP 2 +

σ2

µ
In . (82)

Therefore, by applying (34) – (38), and the above inequalities

in (76), and using adaptive laws (60) – (64) and (52) – (55),

the Lyapunov function derivative V̇ satisfies

V̇ ≤

[

x̃c

x̃e

]T [

Ψ⊗Qc Q

0 IM ⊗Qe

][

x̃c

x̃e

]

, (83)

where Qc and Q are defined in (44) and (78), respectively.

By using positive definiteness of Ψ due to Lemma 2, and the

property that eigenvalues of the matrix Ψ⊗Qc are products of

eigenvalues of Ψ and Qc (Theorem 6 in [26]), we know V̇ is

negative semidefinite if the matrices Qc and Qe are negative

definite (see (84) and (85)). Thus, we conclude that x̃c
i , x̃e

i ,

ϑ̂c
i , θ̂ci , α̂c

i , ω̂c
i , ϑ̂e

i , θ̂ei , α̂e
i , ω̂e

i , and κ̂i are uniformly bounded.

Then, the proof can be concluded by using a similar reasoning

logic as reported in the analysis of Theorem 1.

The aforementioned design and analysis procedure is sum-

marized in the following theorem:

Theorem 2: If there exists a symmetric positive definite

matrix P ∈ ℜn×n, a matrix GB ∈ ℜm×l, positive constants ρ

and µ such that (56) and the following LMIs are satisfied:

ÃTP + PÃ+ µP 2 +
σ2

µ
In − 2ρ γ PBBTP < 0 , (84)

ĀTP + PĀ+ µP 2 +
σ2

µ
In < 0 , (85)

where In is the identity matrix, and σ is the Lipschitz constant

defined in (3). Then, the state estimator (51) – (55) and the

adaptive control law (58) – (64) with distributed controller

gains given by (23) guarantee the following properties:

1) All the signals are uniformly bounded.

2) The leader-follower consensus is achieved asymptot-

ically with a time-varying leader state, i.e., xi(t) −
x0(t) → 0 as t → ∞.

3) The state estimation error for each distributed agent

converges to zero asymptotically, i.e., x̂i(t)−xi(t) → 0
as t → ∞.

Remark 5: Two neural network based adaptive approximators

are employed in the FTC method, including f̂e
i (yi, ϑ̂

e
i (t)) in

the state estimator (51) and f̂ c
i (yi, ϑ̂

c
i (t)) in the control law

(59). Note that the objective of the approximator f̂e
i is to learn
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the unknown fault function, while the objective of f̂ c
i is to

modify the feedback control law via parameter adaptation so

as to stabilize the system and guarantee leader-following per-

formance in the presence of faults. Hence, the adaptive designs

are different (see (52) and (60)). Furthermore, conditions (84),

(85), and (56) can be transformed into standard linear matrix

inequalities. Then, a feasible solution to (84), (85), and (56)

can be possibly found by using LMI tools.

IV. SIMULATION RESULTS

In this section, a simulation example of a networked multi-

agent system consisting of 5 flexible link robotic arms is

considered to illustrate the effectiveness of the distributed FTC

method developed for two cases, i.e., with only limited output

measurement and with full-state measurement, respectively.

A. Case 1: Input-Output Agents

The dynamics of each agent given in [11], [29] can be easily

put into the general form (46), where the state of the ith agent

xi ∈ ℜ4, for i = 1, · · · , 5, is consisting of the motor position,

motor velocity, link position and link velocity, respectively,

and ui is the input of the ith agent representing the motor

torque. Specifically, we have

A =











0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 10

19.5 0 −19.5 0











, C =







1 0 0 0

0 1 0 0

0 0 1 0






,

B = [0 , 21.6 , 0 , 0]T , D = F = [0 , 1 , 0 , 0]T , and the

nominal nonlinear term g(xi) = [0, 0, 0, −0.333sin(xi3)]
T .

The modeling uncertainty in the dynamics is assumed to

be an unmodeled Coulomb friction in the motor given by

ηi = −1.5sgn(xi2), which is bounded by unknown constant

ωi (i.e., η̄i = 1 in (48)). By using the LMI toolbox, we obtain

P =













515 18.2 −442 59.2

18.2 1.24 −16.1 0

−442 −16.1 410.5 −39

59.2 0 −39 101.8













, ρ = 0.1 ,

L =













0 0 0

432 41 −368

0 0 0

0 0 0













, K = [20 , 1.9 , −17 , −8.4] ,

GB = [393.12 , 26.78 , −347.76] , µ = 0.01 .

The objective is to have each agent follow a virtual leader

given by ẋ0 = g(x0)+Ax0 +Bu0 with zero initial condition

and the input u0 = sin(0.1t). The intercommunication graph

of agents is shown in Figure 1. As can be seen, the virtual

leader’s command is only communicated with the second

agent (i.e., k20 = 1). We choose k̄2 = 0.5. Then, the

left eigenvector of Ψ associated with the zero eigenvalue is

χ̄ = [0.425, 0.142, 0.212, 0.402, 0.521, 0.566]T . The matrix Ψ

defined in Lemma 2 has the minimum eigenvalue of γ = 0.072
and the maximum eigenvalue of ̺ = 10.84.

The two adaptive approximators (i.e., f̂e
i (yi, ϑ̂

e
i (t)) in the

state estimator (51) and f̂ c
i (yi, ϑ̂

c
i (t)) in the control law (58)

are both implemented as radial basis function (RBF) neural

networks. Each RBF network consists of 5 neurons with 5

adjustable parameters. The center of radial basis functions are

equally distributed on interval [−3, 3] with a variance of 1.

The initial values of the parameter vector is set to zero. We

set the learning rates as Γi = 3 and Γ̄i = 0.2 and consider

an unknown constant bound on the network approximation

error, i.e., δ̄i = 1. The learning rates are chosen as Υi = 1.5,

Ῡi = 3, and Λi = 0.5.

We consider an actuator fault with a magnitude of θ1 =
−0.65 and a process fault leading to extra abnormal viscous

friction in the motor (i.e., fi(xi) = −1.5 xi2) that occur

abruptly (i.e., βi is a step function) to agent 1 at Tiu = 10
second and Tif = 20 second, respectively. Note that for t ≥ 20
second, both faults are simultaneously affecting the local agent

dynamics. Regarding the performance of the FTC schemes, as

can be seen from Figure 2, the leader-following consensus is

achieved using the proposed adaptive FTC even in the presence

of faults, while the agents cannot achieve the leader-following

consensus without the FTC controller (see Figure 3).

Fig. 2. Tracking errors with distributed adaptive FTC: input-output agents

B. Case 2: Full-State Measurements

The dynamics of each agent given in [11] can be easily put

into the general form (1), where the matrices A, B, D, F ,

the nominal nonlinear term g(xi), the unmodeled Coulomb

friction in the motor given by ηi, the design matrices P and

K , and the design constant µ are given in Section IV-A.

The virtual leader is given by ẋ0 = g(x0) + Ax0 + Bu0

with zero initial condition and the input u0 = sin(0.1t), and

the intercommunication graph of agents is shown in Figure 1.

The adaptive approximator f̂i(xi, ϑ̂i(t)) in the control law

(10) is implemented as radial basis function (RBF) neural

networks, where each RBF network consists of 5 neurons with

5 adjustable parameters. The center of radial basis functions
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Fig. 3. Tracking errors without distributed adaptive FTC: input-output agents

are equally distributed on interval [−3, 3] with a variance of

1. The initial values of the parameter vector is set to zero.

We use the same learning rates as given in Section IV-A. The

learning rate Λ̄i = 0.5 is also chosen.

We consider an actuator fault with a magnitude of θ1 =
−0.65 and a process fault leading to extra abnormal viscous

friction in the motor (i.e., fi(xi) = −1.5 xi2) that occur

abruptly (i.e., βi is a step function) to agent 1 at Tiu = 10
second and Tif = 20 second, respectively. As can be seen from

Figure 4, the leader-following consensus is achieved using

the proposed adaptive FTC even in the presence of faults,

while the agents cannot achieve the leader-following consensus

without the FTC controller (see Figure 5).
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Fig. 4. Tracking errors with distributed adaptive FTC: full-state measurements

V. CONCLUSIONS

In this paper, the problem of distributed FTC design for

a class of high-order nonlinear uncertain multi-agent sys-

tems under a bidirectional intercommunication topology with

asymmetric weights is investigated. The FTC schemes are

developed for two cases, i.e., with full-state measurement and
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Fig. 5. Tracking errors without distributed adaptive FTC: full-state measure-
ments

with only limited output measurement, respectively. Adaptive

learning algorithms are developed to maintain leader-following

consensus with a time-varying leader, even in the presence of

process and actuator faults. For the case of partial state mea-

surement, the minimum eigenvalue of the matrix associated

with the communication topology is needed, which is consid-

ered topology global information. The extensions to directed

communication links among the followers, more general agent

models, and removing the topology global information in the

case of partial state measurement are interesting topics for

future research.
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