Dichloro-phenyl-benzotriazoles: a new selective class of Human Respiratory Syncytial virus entry inhibitors

Sandra Piras^a, Giuseppina Sanna^b, Antonio Carta^a, Paola Corona^a, Roberta Ibba^a, Roberta Loddo^b, Silvia Madeddu^b, Paola Caria^b, SuzanaAulic^c, Erik Laurini^c, Maurizio Fermeglia^c, Sabrina Pricl^c.

TABLE S1. Activity of 5,6-dichloro-1-phenyl-benzotriazole amides(**5a-d** and **7a-h**) against viruses representative of positive-sense, single-stranded RNAs (ssRNA+): i) Retroviridae: HIV-1; ii) Flaviviridae: YFV and BVDV; iii) Picornaviridae: CV-B5 and Sb-1. Viruses representative of negative-sense, single-stranded RNAs (ssRNA-); i) Rhabdoviridae: VSV. Virus representative of double-stranded RNAs (dsRNA): Reoviridae: Reo-1. DNA virus representatives: i) Poxviridae: VV; ii) Herpesviridae: HSV-1. Efavirenz, 2'-C-methyl-guanosine, and Pleconarilwere used as reference inhibitors. Data represent mean values ± SD for three independent determinations. For values where SD is not shown, variation among duplicate samples was less than 15%. Efavirenz (EFV), 2'-C-methyl-guanosine (2MG), and Pleconaril (PCL) were used as reference inhibitors.

Cpd	MT-4 cells	HIV-1 _{IIIB}	MDBK cells	BVDV	BHK cells	YFV	Reo-1	Vero-7 6 cells	CV-B5	Sb-1, VSV, VV, HSV-1
	CC ₅₀ ^a	EC ₅₀ ^b	CC ₅₀ ^c	EC ₅₀ ^d	CC ₅₀ e	EC ₅₀ ^f	$\mathrm{EC}_{50}{}^{\mathrm{g}}$	CC ₅₀ ^h	EC ₅₀ i	$\mathrm{EC}_{50}{}^{\mathrm{j}}$
1a	>100	>100	>100	75	>100	>100	>100	>100	85	>100
5a	35	>35	43	>43	53	>53	>53	30	17	>30
5b	28	>28	>100	>100	54	>54	>54	30	>30	>30

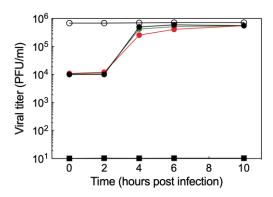
^a Department of Chemistry and Pharmacy, University of Sassari, IT, Italy.

^b Department of Biomedical Sciences, University of Cagliari, IT, Italy.

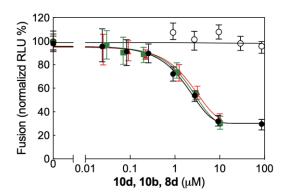
^c Molecular Simulation Engineering (MOSE) Laboratory, University of Trieste, IT, Italy.

5c	60	>60	>100	>100	>100	>100	>100	10	9	>100
5d	35	>35	14	>14	16	>16	>16	20	>20	>20
7a	>100	>100	>100	>100	44	>44	>44	>100	>100	>100
7b	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
7c	33	>33	>100	>100	>100	>100	>100	>100	>100	>100
7d	77	>77	>100	>100	>100	78	>100	90	>90	>90
7e	>100	>100	>100	>100	96	>96	>96	>100	>100	>100
7f	>100	>100	>100	>100	84	>84	>84	>100	>100	>100
7g	>100	>100	>100	>100	>100	>100	>100	9	>90	>90
7h	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
Ref Cp	d									
EFV	40	0.002 ± 0.0002								
2MG			>100	1.1 ± 0.1	>100	1.9 ± 0.1	0.7 ± 0.2			
PCL								>10	0.005 ± 0.001	

^aCompound concentration (μM) required to reduce the proliferation of mock-infected MT-4 cells by 50%, as determined by the MTT method. ^bCompound concentration (μM) required to achieve 50% protection of MT-4 cells from HIV-1 induced cytopathogenicity, as determined by the MTT method. ^cCompound concentration (μM) required to reduce the viability of mock-infected MDBK cells by 50%, as determined by the MTT method. ^dCompound concentration (μM) required to achieve 50% protection of MDBK cells from BVDV-induced cytopathogenicity, as determined by the MTT method. ^cCompound concentration (μM) required to reduce the viability of mock-infected BHK cells by 50%, as determined by the MTT method. ^cCompound concentration (μM) required to achieve 50% protection of BHK cells from YFV-induced cytopathogenicity, as determined by the MTT method. ^cCompound concentration (μM) required to reduce the viability of mock-infected VERO-76 cells by 50%. as determined by the MTT method. ^cCompound concentration (μM) required to reduce the plaque number of CV-B5 by 50% in VERO-76 monolayers. ^cCompound concentration (μM) required to reduce the plaque number of Sb-1, VSV, VV and HSV-1 by 50% in VERO-76 monolayers.


TABLE S2. Activity of 5,6-dichloro-2-phenyl-benzotriazole amides(**6a-h** and **8a-h**), and 5,6-dichloro-2-phenyl-benzotriazole urees(**10a-k**) against viruses representative of positive-sense, single-stranded RNAs (ssRNA+): i) Retroviridae: HIV-1; ii) Flaviviridae: YFV and BVDV; iii) Picornaviridae: CV-B5 and Sb-1. Viruses representative of negative-sense, single-stranded RNAs (ssRNA-); i) Rhabdoviridae: VSV. Virus representative of double-stranded RNAs (dsRNA): Reoviridae: Reo-1. DNA virus representatives: i) Poxviridae: VV; ii) Herpesviridae: HSV-1. For values where SD is not shown, variation among duplicate samples was less than 15%. Efavirenz (EFV), 2'-C-methyl-guanosine (2MG), and Pleconaril (PCL) were used as reference inhibitors.

Cpd	MT-4 cells	HIV-1 _{IIIB}	MDBK cells	BVDV	BHK cells	YFV	Reo-1	Vero-76 cells	CV-B5	Sb-1, VSV, VV, HSV-1
	CC ₅₀ ^a	EC ₅₀ ^b	CC ₅₀ ^c	EC ₅₀ ^d	CC ₅₀ ^e	EC ₅₀ ^f	$\mathrm{EC}_{50}{}^{\mathrm{g}}$	CC ₅₀ ^h	EC ₅₀ ⁱ	$\mathrm{EC}_{50}{}^{\mathrm{j}}$
1b	52	>52	≥100	20	>100	>100	>100	>100	>100	>100
6a	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
6b	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
6с	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
6d	33	>33	100	>100	72	>72	>100	>100	>100	>100
6e	15	>15	72	>72	26	>26	>26	>100	61	>100
6f	24	>24	84	>84	62	>62	>26	>100	33	>100
8a	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
8b	>100	>100	>100	>100	>100	73	>100	>100	>100	>100
8c	>100	>100	>100	>100	>100	>100	>100	>100	14	>100
8d	63	>63	>100	35	35	>35	>35	80	>80	>80
8e	>100	>100	>100	4	68	>68	>68	>100	>100	>100
8f	>100	>100	>100	60	>100	>100	>100	80	>100	>100


		1	1		1		1			
8g	>100	>100	>100	28	>100	>100	>100	>100	>100	>100
8h	>100	>100	>100	11	>100	>100	>100	>100	>100	>100
10a	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
10b	>100	>100	78	>78	40	>40	>40	30	>30	>30
10c	>100	>100	>100	>100	>100	>100	>100	90	>95	>95
10d	>100	>100	>100	>100	71	>71	>71	90	>90	>90
10e	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
10f	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
10g	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
10h	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
10i	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
10j	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
10k	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
Ref Cpd										
EFV	40	0.002 ± 0.0002								
2MG			>100	1.1 ± 0.1	>100	1.9 ± 0.1	0.7 ± 0.2			
PCL								>100	0.005 ± 0.001	

 a Compound concentration (μM) required to reduce the proliferation of mock-infected MT-4 cells by 50%, as determined by the MTT method. b Compound concentration (μM) required to achieve 50% protection of MT-4 cells from HIV-1 induced cytopathogenicity, as determined by the MTT method. c Compound concentration (μM) required to reduce the viability of mock-infected MDBK cells by 50%, as determined by the MTT method. c Compound concentration (μM) required to achieve 50% protection of MDBK cells from BVDV-induced cytopathogenicity, as determined by the MTT method. c Compound concentration (μM) required to reduce the viability of mock-infected BHK cells by 50%, as determined by the MTT method. c Compound

concentration (μ M required to achieve 50% protection of BHK cells from YFV-induced cytopathogenicity, as determined by the MTT method. ^gCompound concentration (μ M) required to achieve 50% protection of BHK cells from Reo-1-induced cytopathogenicity, as determined by the MTT method. ^hCompound concentration (μ M) required to reduce the viability of mock-infected VERO-76 cells by 50%. as determined by the MTT method. ⁱCompound concentration (μ M) required to reduce the plaque number of CV-B5 by 50% in VERO-76 monolayers. ⁱCompound concentration (μ M) required to reduce the plaque number of Sb-1, VSV, VV and HSV-1 by 50% in VERO-76 monolayers.

Figure S1.Inhibition of RSV (m.o.i = 1) by addition of 20 μ M of compound **10d** (black filled circles), **10b** (green filled circles), and **8d** (red filled circles) at different times. Data for untreated virus (open circles) and for addition of 6-azauridine (filled squares) are also shown for comparison. Data represent mean values from two independent determinations; variation among duplicate samples was less than 15%. Data for **10b** and **8d** were obtained under the same conditions employed for **10d** (see main text, Materials and Methods section).

Figure S2.Quantitative dose-response cell-to-cell fusion assay using the DSP-chimeric reporter proteins and the ViviRenrenilla luciferase substrate in the presence of compounds **10d** (black filled symbols), **10b** (green filled symbols), and **8d** (red filled symbols). The MeV (Measles Virus) F and H glycoprotein expression constructs (open symbols) were included for selectivity control. Reported values are normalized for DMSO-treated samples and are expressed as the mean of three experiments \pm standard deviation. The EC₅₀ values for the three compounds, obtained by 4-parameter variable slope regression fitting, are: 3.2 μM for **10d**, 3.9 μM for **10b**, and 4.5 μM for **8d**, respectively. Data for **10b** and **8d** were obtained under the same conditions employed for **10d** (see main text, Materials and Methods section).