
Balanced crossover operators in Genetic Algorithms

Luca Manzoni a, Luca Mariot b,∗, Eva Tuba c

a Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy
b DISCo, Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, 20126 Milano, Italy
c Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia

A R T I C L E I N F O

Keywords:
Genetic algorithms
Crossover operators
Balanced bitstrings
Boolean functions
Orthogonal arrays
Bent functions

A B S T R A C T

In several combinatorial optimization problems arising in cryptography and design theory, the admissible solu-
tions must often satisfy a balancedness constraint, such as being represented by bitstrings with a fixed number
of ones. For this reason, several works in the literature tackling these optimization problems with Genetic Algo-
rithms (GA) introduced new balanced crossover operators which ensure that the offspring has the same balanced-
ness characteristics of the parents. However, the use of such operators has never been thoroughly motivated,
except for some generic considerations about search space reduction. In this paper, we undertake a rigorous
statistical investigation on the effect of balanced and unbalanced crossover operators against three optimiza-
tion problems from the area of cryptography and coding theory: nonlinear balanced Boolean functions, binary
Orthogonal Arrays (OA) and bent functions. In particular, we consider three different balanced crossover opera-
tors (each with two variants: “left-to-right” and “shuffled”), two of which have never been published before, and
compare their performances with classic one-point crossover. We are able to confirm that the balanced crossover
operators perform better than one-point crossover. Furthermore, in two out of three crossovers, the “left-to-right”
version performs better than the “shuffled” version.

1. Introduction

Crossover (or recombination) operators play a crucial role in Genetic
Algorithms (GA). The idea underlying crossover, borrowed from biolog-
ical evolution, is quite simple: given two candidate solutions, combining
parts of their chromosomes will yield an offspring potentially having
better fitness than the parents. This strategy stands on the observation
that fit individuals share some traits encoded at the chromosome level,
which can be inherited by their children via crossover. Indeed, this intu-
ition has been formalized by Holland [6] with the concept of building
blocks used in schema theory.

There exist several classes of combinatorial optimization problems
whose feasible solutions must contain a specified number of ones, i.e.
they must have a fixed Hamming weight. Examples of such problems
come, for instance, from the domain of cryptography, where balanced
Boolean functions are used to design symmetric key cryptosystems [1].
Another research area where balanced binary strings are sought is
that of combinatorial designs: there, one is interested in constructing
subsets of a certain support space (called blocks) which satisfy spe-
cific balancedness constraints [20]. A third research field where fixed-

∗ Corresponding author.
E-mail addresses: lmanzoni@units.it (L. Manzoni), luca.mariot@unimib.it, luca.mariot@disco.unimib.it (L. Mariot), etuba@ieee.org (E. Tuba).

weight bitstrings are used is that of portfolio optimization; indeed, a
portfolio can be represented by a binary vector where the positions
set to 1 indicate that the corresponding assets have been selected
[7].

Genetic algorithms seem like a sensible choice for solving the opti-
mization problems mentioned above. However, breeding feasible solu-
tions which have a fixed Hamming weight is something that classic GA
recombination operators such as one-point crossover cannot handle. As
a matter of fact, starting from two individuals with the same number of
ones and applying one-point crossover will likely produce an offspring
having a different Hamming weight. This is due to the fact that one-
point crossover (as well as most other recombination operators in the
literature) does not enforce any control over the multiplicities of the
alleles copied in the offspring. Of course, this drawback in dealing with
fixed-weight bitstrings can be addressed at the fitness function level.
Since we do not have any guarantee that the offspring has the desired
number of ones, the idea is to add a penalty factor to the fitness func-
tion which punishes deviations from the expected Hamming weight.
Although being the simplest solution to cope with this constraint, one
might argue that it wastes a lot of fitness evaluations, because most of

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2020.100646&domain=pdf
mailto:lmanzoni@units.it
mailto:luca.mariot@unimib.it
mailto:luca.mariot@disco.unimib.it
mailto:etuba@ieee.org

L. Manzoni et al.

the solutions generated by classic crossover operators will violate the
fixed-weight property.

An alternative way to address this problem is to design new recom-
bination operators that preserve the Hamming weight of the bitstrings,
which we term balanced crossover operators in what follows. The first
researchers who pioneered this approach in the area of cryptography
were Millan et al. [14], who proposed a counter-based crossover oper-
ator to evolve balanced Boolean functions, which was later adapted to
evolve plateaued functions in Ref. [10]. Similar operators have been later
proposed for GA applied to combinatorial designs problems [11,12],
portfolio optimization [2,3], multiobjective k-subset selection [13] and
disease classification [18,19].

Looking at the existing literature, one can remark that the introduc-
tion of balanced crossover operators has never been thoroughly moti-
vated. In fact, the only recurring motivation supporting the use of such
operators is the reduction of the search space (see e.g. Ref. [12]). To
be sure, restraining the crossover operator to produce only fixed Ham-
ming weight bitstrings greatly shrinks the space of candidate solutions
searched by GA. Nonetheless, although the reduction is quite evident
for short strings, this advantage becomes less clear as the Hamming
weight k approaches n∕2, since

(
n

n∕2

)
= Θ(2n√

n
). Moreover, most of the

works in the literature employing balanced crossover operators do not
perform a sound comparison of their results with those that can be
obtained with classic operators. Hence, it is not even clear on a sta-
tistical basis whether balanced crossover operators actually bring any
advantage to GA working with fixed Hamming weight bitstrings.

The aim of this paper is to begin closing this gap by performing a
thorough statistical comparison of balanced and classic crossover oper-
ators over a set of problems from the area of cryptography and design
theory. In particular, we consider three balanced crossover operators
in our investigation: the first is a modification of the counter-based
operator proposed by Millan et al. [14]. The other two, as far as our
knowledge goes, have never been published before, and they are based
respectively on the map of ones and zero lengths chromosome encodings.
For all three crossover operators, we have defined two variants: a “left-
to-right” one, where the crossover is applied as usual, and a “shuffled”
version, where the positions of an individual are randomly shuffled, the
crossover is performed, and the positions are shuffled back in order.
This operations should, in principle, counterbalance any positional bias
in the crossover operator. As a term for comparison we considered one-
point crossover, optimizing the Hamming weight as a penalty factor in
the fitness function.

We considered three combinatorial optimization problems in our
statistical investigation. The first one regards nonlinear balanced Boolean
functions, where the goal is to maximize the nonlinearity of the func-
tions while retaining their balancedness. The second problem, always
concerning Boolean functions, is the evolution of bent functions, which
reach the highest possible nonlinearity and, although unbalanced, have
a specified Hamming weight. Finally, the third problem pertains binary
Orthogonal Arrays (OA), which are Boolean matrices having balanced
subsets of columns.

We carried out our experiments over three different instances for
each problem. In order to compare the performances of the four
crossover operators, we employed a non-parametric statistical test over
the best individual produced by each experimental run, namely the
Mann-Whitney-Wilcoxon test [4]. Some works in the literature [15,16]
performed a comparison with non-parametric tests on classic crossover
operators, but did not consider balanced operators.

In our experiments we considered two main types of research ques-
tions: whether the balanced operators perform better than the one-point
crossover, and whether there is any difference between the “left-to-
right” and “shuffled” versions of the operators. For the first question,
we are able to answer affirmatively: balanced crossover operators per-
forms better, in general, than one point crossover. In particular, using
one point crossover seems to be a bad choice for those problems where

the balancedness constraint plays an important role in the fitness func-
tion, i.e. in the OA problem. As for the second question, the answer is
more nuanced: for two out of three crossovers, removing any positional
bias is actually detrimental to the performances in some cases. Similarly
to the first question, this fact is more evident in the OA problem where
balancedness is a key component of the fitness function. Concerning the
map of ones crossover, however, both the “left-to-right” and “shuffled”
versions have similar performances.

Although this work focuses on investigating the properties of bal-
anced crossover operators, rather than proposing them to outperform
other state-of-the-art evolutionary algorithms for problems in cryptog-
raphy and combinatorial design theory, we compare our results with
some recent work on the subject, namely [17] for balanced nonlinear
and bent Boolean functions and [12] for orthogonal arrays. While in the
first case our map of ones crossover has a performance similar to those
of the algorithms studied in Ref. [17], it still falls short of achieving the
success rate of Genetic Programming (GP) over the OA problem in Ref.
[12], altough it improves on the GA used in the same paper.

This work is an extended version of the short paper [9] presented at
GECCO 2019. In particular, the new contributions concern the experi-
ments over the bent functions and orthogonal arrays problems, and the
comparison between the “left-to-right” and “shuffled” versions of the
balanced crossover operators.

The remainder of this paper is structured as follows. Section 2 cov-
ers some basic background definitions about fixed Hamming weight bit-
strings, and describes in detail the three balanced crossover operators
investigated in our study. Section 3 formally states the three optimiza-
tion problems considered in our investigation. Section 4 describes the
experimental design of our study, discussing in particular the structure
of the steady state GA employed in our experiments, and stating three
research hypotheses about the performances of balanced crossover
operators. Section 5 presents the results of our experiments, analyz-
ing the performances of the considered crossover operators through
non-parametric tests. Section 6 engages in a discussion of the three
hypotheses in light of our experimental findings, and compares the
obtained results with some recent work in the literature. Finally, Section
7 concludes the paper, and sketches some possible future directions of
research on the subject.

2. Balanced crossover operators

In this section, we describe the three balanced crossover operators
analyzed in our experiments. Before delving into the details of each
operator, we recall some basic definitions and results about bitstrings
and their Hamming weights.

Let 𝔽2 = {0,1} be the finite field with two elements. A bitstring
of length n ∈ ℕ is a binary vector x of n components, each of them
belonging to 𝔽2. We denote by 𝔽 n

2 the set of all bitstrings of length n.
In what follows, we will often endow 𝔽 n

2 with a vector space struc-
ture, with bitwise XOR (denoted as ⊕) as vector sum and logical AND
as multiplication by a scalar from 𝔽2. Given a bitstring x ∈ 𝔽 n

2 , let
supp(x) = {i ∶ xi ≠ 0} be the support of x, that is, the set of coordi-
nates equal to 1 of the bitstring. The Hamming weight wH(x) of x is then
defined as the cardinality of its support, i.e. wH(x) = |supp(x)|. If n is
even and wH(x) = n∕2, we say that the bitstring x is balanced. In other
words, x is balanced when it is composed of an equal number of zeros
and ones.

A binary string x ∈ 𝔽 n
2 can be interpreted as the characteristic function

of a set S ⊆ [n] = {1,… , n}. In particular, the support of x corresponds
exactly to S, i.e. to the image of its characteristic function. Basic com-
binatorial arguments show that the number of all bitstrings of length n
is |𝔽 n

2 | = 2n, that is, the cardinality of the power set ([n]) of [n]. Like-
wise, for k ∈ [n] the size of the set n,k of bitstrings having Hamming
weight k, or equivalently the number of k-subsets of [n], is

(
n
k

)
, since

it corresponds to the number of ways one can choose k objects out of n.

2

L. Manzoni et al.

The search space of interest for our investigation is precisely n,k,
which we will also call the set of (n, k)-combinations in what follows.
In particular, n,k will represent the set of feasible solutions to a par-
ticular optimization problem explored by GA. Although several types of
crossover operators have been proposed in the literature of GA, very few
of them consider restrictions on the Hamming weights of the chromo-
somes, i.e. which actually restrict the search of a GA to n,k. More gen-
erally, such crossover operators are not specifically designed to evolve
(n, k)-combinations.

We now describe the crossover operators adopted in our experi-
ments. Each of these operators is based on a different encoding for the
chromosome of a candidate solution, which corresponds to a specific
representation of an (n, k)-combination. The reader is referred to Knuth
[8] for further information about the properties of these encodings. We
emphasize that, while the counter-based crossover operator is an adap-
tation of the one conceived by Millan et al. [14], to our knowledge the
other two operators have not been proposed before in the literature.

2.1. Counter-based crossover

As discussed above, the binary vector coding is the most obvious and
straightforward way to represent a (n, k)-combination: given a bitstring
x = (x1,… , xn) of length n, the positions of x having value 1 denote
the k selected objects out of a set of n, while the remaining n − k
zeros represent the unselected objects. As an example, consider the case
where n = 8 and k = 4. A (8,4)-combination can be represented by a
balanced bitstring of length 8, such as: x = (0,1,0,0,1,1,0,1).

Of course, binary vector coding is also the most natural chromosome
representation for GA. However, in order to evolve only individuals
with a fixed Hamming weight, one has to come up with a particular
crossover operator. Perhaps the simplest way to design such an operator
is to randomly select bit-by-bit the allele from the first or the second
parent to be copied in the offspring (as in uniform crossover), and use
counters to keep track of the multiplicities of ones and zero in the child.
When one of the two counters reaches the prescribed threshold (i.e. k
for the ones counter and n − k for the zero counter), the child is filled
with the complementary value.

To our knowledge, Millan et al. [14] were the first to propose a
crossover operator based on this idea to evolve nonlinear balanced
Boolean functions. We report in Algorithm 1 the pseudocode of a
slightly modified operator, which we used in our experiments.

Algorithm 1 Counter-Cross(p1, p2, n, k)

s ≔ 0; t ≔ 0; c ≔ 0n;
for i ≔ 1 to n do

if(s = k) then
c[i] ≔ 0

else
if(t = n − k) then

c[i] ≔ 1
else

c[i] ≔ Random(p1[i], p2[i])
if(c[i] = 1) then

s ≔ s + 1
else

t ≔ t + 1
end if

end if
end if

end for
return c

Given two bitstrings p1, p2 ∈ 𝔽 n
2 of length n and Hamming weight k,

the procedure Counter-Cross initializes the counters (s for the number of
1s and t for the number of 0s) and sets to zero all the bits in the string c,
which will hold the chromosome of the child produced by the crossover

operation. Then, for i ∈ {1,… , n}, the i-th bit of c is determined as fol-
lows. If the maximum number of ones (respectively, zeros) allowed has
already been reached, then c[i] is set to 0 (respectively, 1). In all other
cases, c[i] is chosen by randomly selecting with uniform probability the
i-th bit of p1 or p2, and the counters are updated according to the drawn
value. In this way, the child c produced by Counter-Cross is itself bal-
anced.

2.2. Zero lengths crossover

Given the bitstring x = (x1,… , xn) of a (n, k)-combination, the zero
lengths coding of x is the vector r = (r1,… , rn−k+1) which lists the dis-
tances between consecutive ones in x. In other words, the values ri denote
the lengths of the runs of zeros which separate the ones in the binary
vector coding, with the particular cases of r1 and rn−k+1 which repre-
sent the number of zeros preceding the first 1 and following the last 1
in x, respectively.

Clearly, in order to ensure that a given zero lengths coding vector
r = (r1,… , rn−k+1) represents a valid (n, k)-combination, the following
relation must hold:

n−k+1∑
i=1

ri = n − k. (1)

Following the example adopted in the previous two sections, the run
length coding of the bitstring x is r = (1,2,0,1,0). As we pointed out
in Equation (1), the zero lengths vector of a bitstring of length n and
Hamming weight k is valid if and only if the sum of the components
in the vector equals n − k. In a crossover operator based on the zero
lengths representation it is thus necessary to control the sum of the run
lengths of zeros in the offspring, while the components of the vector
are copied from the parents. The pseudocode for the crossover operator
that we designed for this specific coding is reported in Algorithm 2.

Algorithm 2 Zero-Lengths-Cross(p1, p2, n, k)

sumz ≔ 0
c ≔ 0k+1

for i ≔ 1 to k do
if(sumz = n − k) then

c[i] ≔ 0
else

cpar ≔ Random(p1, p2)
if(sumz + cpar[i] = n − k) then

c[i] ≔ cpar[i]
sumz ≔ sumz + cpar[i]

else
c[i] ≔ n − k − sumz
sumz ≔ n − k

end if
end if

end for
c[k + 1] ≔ n − k − sumz
return c

The operator takes as input the zero lengths vectors p1, p2 of two
bitstrings x1, x2 ∈ n,k, their length n and their Hamming weight k. The
first steps are devoted to the initialization of the zero length vector of
the child c (filled with k + 1 zeros) and the accumulator sumz used to
control the value of the sum of zeros in c. The FOR loop cycles over the
first k positions of c. For each iteration i, an IF block initially checks
whether the sum of zeros in c has already reached n − k, in which
case the value of c[i] is set to zero. In the other case, a candidate parent
cpar is randomly selected between p1 and p2 with uniform probability.
The next IF block verifies whether the value at position i of the selected
parent cpar can be safely copied in the child without breaking the n − k
limit set by Equation (1). If this is the case (i.e. sumz + cpar[i] is at

3

L. Manzoni et al.

most n − k), then cpar[i] is copied in c[i], and the accumulator sumz
is updated by adding to it cpar[i]. Otherwise, the value in c[i] is set to
the remaining number of zeros that can be put in the child, which is
n − k − sumz. Equivalently, this means that we are copying in c[i]
just enough zeros from cpar[i] to reach the threshold n − k, without
violating it. Then, the accumulator sumz is directly set to n − k, since
no other zeros can be put in the child. After the FOR loop, the value of
the last component in c is determined by simply subtracting from n − k
the sum of zeros obtained up to that point. Thus, if sumz reached n − k
in the FOR loop, the last component will be set to zero, otherwise it will
contain the number of zeros necessary to “pad” the bitstring encoded
by c after its last 1.

2.3. Map of ones crossover

Suppose that x = (x1,… , xn) is the binary vector representation of a
(n, k)-combination, and denote by supp(x) its support. The map of ones of
x is the k-dimensional vector q = (q1,… , qk) where qi ∈ supp(x) for all
i ∈ {1,… , k}, and such that qi ≠ qj for all indices i ≠ j. In other words,
the map of ones of x corresponds to its support in vector form.

Thus, the map of ones representation lists the nonzero coordinates in
the binary coding of a (n, k)-combination. Following the example of the
previous section, the map of ones corresponding to the binary string x
representing a (8,4)-combination is q = (2,5,6,8), where the positions
of the ones are listed in increasing order. Strictly speaking, the order
of the positions is irrelevant, since they always yield the same binary
representation.

One can notice that the only constraint in the map of ones is that
there cannot be duplicate positions in the vector. Thus, given two bit-
strings of length n and weight k represented by their maps of ones, the
crossover operator must be aware of the common positions between
them, in order to avoid duplications. Algorithm 3 reports the pseu-
docode for our crossover operator.

Algorithm 3 Map-1-Cross(p1, p2, k)

c ≔ 0k

comm_list = Find-Common-Pos(p1, p2)
for i ≔ 1 to k do

cpar ≔ Random(p1, p2)
cpos ≔ Rand-Pos(cpar)
c[i] ≔ cpar[cpos]
Remove(cpar, cpar[cpos])
if (Contains(comm_list, cpar[cpos])) then

if (cpar = p1) then
Remove(p2, cpar[cpos])

else
Remove(p1, cpar[cpos])

end if
end if

end for
return c

Let us suppose that we have two bitstrings x1, x2 ∈ n,k of length n
and Hamming weight k, represented respectively by the maps of ones
p1 and p2 of length k. The procedure Map-1-Cross begins by initializing
the map of ones of the child c and by finding the positions which p1
and p2 have in common. The latter operation is performed by the sub-
routine Find-Com-Pos, which returns the vector comm_list. Successively,
for all i ∈ {1,… , k}, the value c[i] is computed as follows. One of the
two parents is randomly chosen by calling the procedure Random on
p1 and p2. Then, a random index cpos is selected from the candidate
parent cpar, and the value of c[i] is set equal to cpar[cpos]. In other
words, the child c inherits from the parent cpar the position of the 1
specified by the value cpar[cpos]. Finally, in order to avoid that the
same position is selected in the next iterations, the value cpar[cpos] is
removed from the candidate parent by using the Remove procedure.

The value is also removed from the unselected parent if it is contained
in comm_list.

2.4. Ordering bias and positions shuffling

It can be noticed that all the balanced crossover operators that we
defined in the previous sections build the child individual from left to
right, i.e. by copying the genes from the parents in increasing order of
position. A natural question arising from this observation is whether
this particular ordering introduces any bias towards a particular sub-
set of feasible offspring. Intuitively, this does not seem to be the case
for the map-of-ones crossover, since as we remarked in Section 2.3 the
phenotype bitstring depends only on the specific values contained in the
map of ones encoding, and not on their ordering. On the other hand,
for the counter-based and zero-length crossover operators the situation
looks different. In fact, after the threshold value has been reached (be
it the number of 0 or 1, or the sum of zero lengths), the remaining loci
of the child are set deterministically. Hence, it would be reasonable to
assume that the counter-based and the zero-length crossover operators
induces a bias in the offspring. We remark that, although this “left-to-
right” approach is prevalent in the relevant literature since Millan et
al.’s counter-based crossover [14], to the best of our knowledge no one
investigated the impact of this design choice on the GA performance.

For this reason, we also considered a “shuffling” version of each
balanced crossover operator which randomly mixes the order of the
positions to be copied from the parents to the offspring, to assess if
there are significant differences in performances with the “left-to-right”
approach. From the pseudocode point of view, the shuffling version
of each balanced operator is practically identical to its “left-to-right”
counterpart, except that an additional array pos of length n representing
a random permutation of the genotype positions is passed as an input
parameter to the operator. Moreover, all occurrences of i used to index
the positions of the child c or the parents p1, p2 are replaced by pos[i].

3. Optimization problems

We now give the formal statement of the three combinatorial opti-
mization problems that we addressed in our statistical comparison of
balanced crossover operators.

3.1. Nonlinear Balanced Boolean functions

A Boolean function of n ∈ ℕ variables is a map f ∶ 𝔽 n
2 → 𝔽2. The com-

mon way for representing a Boolean function f is by means of its truth
table Ωf , which is basically a binary vector of length 2n that specifies for
each input vector x ∈ 𝔽 n

2 the output value of f(x), in lexicographic order.
A Boolean function is called balanced if its truth table Ωf is composed
of an equal number of ones and zeros, i.e. it represents a (2n,2n−1)-
combination.

Another representation of Boolean functions f ∶ 𝔽 n
2 → 𝔽2 used in

cryptography is the Walsh transform, which is the function Wf ∶ 𝔽 n
2 → ℤ

defined for all 𝜔 ∈ 𝔽 n
2 as:

Wf (𝜔) =
∑

x∈𝔽 n
2

(−1)f (x) · (−1)𝜔·x, (2)

where 𝜔 · x = 𝜔1x1 ⊕𝜔2x2 ⊕ · · ·⊕𝜔nxn is the scalar product modulo
2 between the vectors 𝜔, x ∈ 𝔽 n

2 . The spectral radius Wmax(f) of a Boolean
function f is defined as the maximum absolute value of its Walsh trans-
form, i.e. Wmax(f) = max

𝜔∈𝔽 n
2
{∣ Wf (𝜔)}.

The nonlinearity of a Boolean function f ∶ 𝔽 n
2 → 𝔽2 is defined as the

minimum Hamming distance of its truth table Ωf from the set of truth
tables of all linear functions, i.e. those functions whose algebraic expres-
sions contain only XOR. This can be computed through the following
formula based on the Walsh transform:

Nl(f) = 2n−1 − 1
2
· Wmax(f). (3)

4

L. Manzoni et al.

In cryptography, Boolean functions which are both balanced and
have high nonlinearity play a fundamental role in the design of stream
and block ciphers [1]. Since the set of all Boolean functions is composed
of 22n

elements, which is not exhaustively searchable for n > 5, evolu-
tionary algorithms such as GA represent a possible method for finding
highly nonlinear balanced Boolean functions in a reasonable amount
of time. We formally state the combinatorial optimization problem as
follows:

Problem 1. Let n ∈ ℕ. Find a Boolean function f ∶ 𝔽 n
2 → 𝔽2 of n variables

such that f is balanced and has maximum nonlinearity.

In particular, given the truth table bitstring Ωf ∈ 𝔽 2n

2 of a Boolean
function f ∶ 𝔽 n

2 → 𝔽2 of n variables, in our experiments the fitness of f is
computed with the following function:

fit1(f) = Nl(f) − |2n−1 − wH(Ωf)|, (4)

where |2n−1 − wH(Ωf)| is the unbalancedness penalty factor which pun-
ishes the deviation of f from being a balanced function. The objective
of our GA, in particular, is to maximize fit1(f). Of course, when using
balanced crossover operators the penalty factor is not necessary, since
the candidate solutions generated by GA are always balanced functions.

3.2. Bent functions

From Equation (3), one can see that the lower the spectral radius
is, the higher the nonlinearity of a Boolean function will be. Due to
Parseval’s relation [1], the minimum spectral radius is achieved when
the Walsh spectrum is uniformly divided among all 2n vectors. This
means that the Walsh coefficients must all have the same absolute value
2

n
2 , thus giving the following upper bound on nonlinearity:

Nl(f) ≤ 2n−1 − 2
n
2−1

. (5)

Clearly, equality in (5) can occur only if n is even, since the Walsh
coefficients of a Boolean function must be integer numbers. The Boolean
functions achieving this bound are called bent, and they have several
applications in cryptography and coding theory [1].

A nice feature of the Walsh transform is that the Walsh coefficient
Wf (0) (where 0 denotes the null vector) is related to the Hamming
weight of the truth table Ωf as follows:

wH(Ωf) = 2n−1 − 1
2
· Wf (0). (6)

Since all Walsh coefficients of a bent function must be equal to ±2
n
2 ,

this means that the Hamming weight of bent functions is either 2n−1 −
2

n
2−1 or 2n−1 + 2

n
2−1. Without loss of generality, one can narrow the

attention only to the weight 2n−1 − 2
n
2−1, since the others are obtained

by simply complementing the corresponding truth tables. Hence, one
can cast the search of bent functions as an optimization problem over
the set of bitstrings of length 2n and weight k = 2n−1 − 2

n
2−1, which

makes it amenable to GA with balanced crossover operators. For this
reason, we adopted it as our second optimization problem for our inves-
tigation:

Problem 2. Let n ∈ ℕ be an even number. Find a Boolean function f ∶
𝔽 n

2 → 𝔽2 of n variables such that Nl(f) = 2n−1 − 2
n
2−1.

Since bent functions reach the highest possible value of nonlinearity,
we defined a fitness function analogous to fit1. Given f ∶ 𝔽 n

2 → 𝔽2, we
defined the fitness function over f for Problem 2 as follows:

fit2(f) = Nl(f) − |2n−1 − 2
n
2−1 − wH(Ωf)|, (7)

where the unbalancedness penalty factor this time is defined as |2n−1 −
2

n
2−1 − wH(Ωf)|. The optimization objective is again to maximize Equa-

tion (7), since having fit2(f) equal to the covering bound for n corre-
sponds to the case where the nonlinearity is maximal and the deviation

from the prescribed Hamming weight 2n−1 − 2
n
2 −1 is zero. As in the

case of fit1, when using balanced crossover operators the unbalanced-
ness penalty factor is not necessary.

3.3. Binary orthogonal arrays

Orthogonal Arrays (OA) are rectangular matrices whose submatrices
satisfy a specific balancedness constraint on their rows. OA find several
applications in statistics, combinatorial designs theory and cryptogra-
phy [5]. In what follows, we will focus on binary OA, meaning that the
matrices are Boolean. We formally define a binary OA as follows:

Definition 1. Let N, k, t, 𝜆 ∈ ℕ with 0 ≤ t ≤ k. A N × k binary matrix
A is called a binary orthogonal array (OA) with k columns, strength t and
index 𝜆 (for short, an OA(N, k, t, 𝜆)) if in each submatrix of N rows and t
columns each binary t -tuple occurs exactly 𝜆 times.

Notice that the parameter 𝜆 of an OA is related to its strength t and
number of rows N by the relation 𝜆 = N

2t .
For our third optimization problem, formally defined below, we are

interested in binary OA whose columns are truth tables of Boolean func-
tions:

Problem 3. Let n, k, t ∈ ℕ. Find k Boolean functions f1,… , fk ∶ 𝔽 n
2 → 𝔽2

of n variables such that the matrix

A = [Ω⊤
f1
,Ω⊤

f2
,… ,Ω⊤

fk
] (8)

is an OA(2n, k, t, 𝜆), with 𝜆 = 2n−t .

Hence, the goal of Problem 3 is to find k n-variables Boolean func-
tions such that the bitstrings of their truth tables are the columns of a
binary OA with N = 2n rows and strength t.

A useful property for this problem is that any binary OA of strength t
is also an OA of strength t′ < t, for all t′ ∈ {1,… , t − 1}. Taking t′ = 1,
this implies that each column of a binary OA must be a balanced bit-
string of length N. Consequently, one can use a GA with balanced
crossover operators to evolve candidate binary OA as a set of k balanced
bitstrings. New solutions are bred by applying balanced crossover and
mutation independently on the single bitstrings, thus maintaining the
balancedness constraint on the single columns of the array. This is the
optimization approach that was adopted by Mariot et al. [12], from
which we took the fitness function for our experiments. In particular,
the fitness function stands on the idea of counting the repeated tuples in
the submatrices of an array.

Given a N × k binary matrix A, let I be a subset of t indices, and
let AI denote the N × t submatrix obtained by considering only the
columns of A specified by the indices of I. For all binary t-tuples x ∈ 𝔽 t

2,
let AI[x] denote the number of occurrences of x in AI , and let 𝛿(AI , x)
be the 𝜆-deviation of x defined as 𝛿(AI , x) = |𝜆 − AI[x]|. Then, the
Euclidean deviation of AI is defined as:

Δ(AI)2 =

√√√√√√⎛⎜⎜⎝
∑
x∈𝔽 t

2

||𝜆 − AI[x]||2⎞⎟⎟⎠. (9)

The fitness function for Problem 3 is then defined for all 2n × k binary
matrix A formed by k n-variables Boolean functions as follows:

fit3(A) =
∑

I⊆[k]∶|I|=t
Δ(AI)2 + UNB(A), (10)

where the unbalancedness penalty factor UNB(A) is defined as the
sum of the unbalancedness of all Boolean functions f1,… , fk, that
is, UNB(A) = ∑k

i=1 |2n−1 − wH(Ωfi)|. As for the other two optimiza-
tion problems, when using GA with balanced crossover operators this
penalty factor can be dropped from the fitness function. The optimiza-
tion objective is to minimize fit3, since any binary matrix such that
fit3(A) = 0 corresponds to a binary OA(2n, k, t, 𝜆).

5

L. Manzoni et al.

4. Experimental setting

In this section, we describe the details of the genetic algorithm used
to test the three crossover operators presented in Section 2, the parame-
ters used to set up the experiments over the three optimization problems
defined in Section 3, and the experimental hypotheses to be tested.1

4.1. Genetic algorithm details

The genetic algorithm adopted in this work is a steady state GA
where a single pair of parents is drawn from the current population
at each iteration. For selection, we employed a deterministic tournament
operator where the best two out of t randomly sampled individuals are
selected for crossover.

The four crossover operators considered in our investigation are
classic one-point crossover and the three balanced crossover described
in Section 2, namely counter-based, map of ones and zero-lengths
crossover. Our GA generates a single child for each selected pair of
parents, independently of the underlying crossover operator. In partic-
ular, since one-point crossover generates two children by design, our
GA randomly selects only one of them with uniform probability, which
is then subjected to mutation.

The mutation operator depends on the type of crossover: when one-
point crossover is used, a classic bit-flip mutation operator is applied
on the generated child. On the other hand, with balanced crossover
operators a simple swap-based mutation operator is used [12]. In partic-
ular, this mutation operator swaps with probability pm a pair of distinct
values in the child, in order to maintain its Hamming weight. Notice
that swap mutation always operates on the bitstring representation.
Hence, even when zero-length or map-of-ones crossover are employed,
the child is first mapped to the corresponding balanced bitstring, and
then swap mutation is applied to it. Further, remark that in the OA prob-
lem the mutation operator (be it bit-flip or swap mutation) is applied
separately on each column composing the child, as done in Ref. [12].

Once the child has been mutated, the GA evaluates the relevant
fitness function on it. In particular, depending on the optimization
problem considered, if one-point crossover is used then the full form
of the fitness functions fit1, fit2 or fit3 respectively described in Equa-
tions (4), (7) and (10) is used. On the opposite, when one of the three
balanced crossover operators is employed, the unbalancedness penalty
factor is dropped from the computation of the fitness functions. Simi-
larly to the choice of the mutation operator, the creation of the initial
population depends on the adopted crossover operator. For one-point
crossover, the population is initialized at random, without controlling
the Hamming weights of the generated bitstrings. Contrarily, for bal-
anced crossover operators each chromosome is created by generating
at random each bit in the bitstring, and using a counter to keep track
of the number of ones. When the prescribed Hamming weight has been
reached, the chromosome is filled with zeros in the remaining positions.

Our GA uses an elitist strategy with random replacement: in par-
ticular, if the child has a better fitness value than any of its two par-
ents, then an individual is drawn at random from the population to be
replaced by the child. To guarantee elitism, if the child has a better
fitness value of its two parents but not of the best individual in the
whole population, then the latter is excluded from the replacement.
Further, since we are more interested in comparing the performances
of the crossover operators than in generating optimal solutions for the
considered problems, the GA terminates after it performs a specified
number of fitness evaluations.

1 The source code of our GA and the experimental results presented
in the next section are publicly available at https://github.com/rymoah/
BalancedCrossoverGA.

Table 1
Problem instances and relative search space sizes.

Problem Instance UNB Size BAL Size

Bal-NL n = 6 226 ≈ 1.8 · 1019
(

64
32

)
≈ 1.8 · 1018

n = 7 227 ≈ 3.4 · 1038
(

128
64

)
≈ 2.4 · 1037

n = 8 228 ≈ 1.1 · 1077
(

256
128

)
≈ 5.7 · 1075

Bent n = 6 226 ≈ 1.8 · 1019
(

64
28

)
≈ 1.1 · 1018

n = 8 228 ≈ 1.1 · 1077
(

256
120

)
≈ 3.5 · 1075

n = 10 2210 ≈ 1.8 · 10308
(

1024
496

)
≈ 2.7 · 10306

Bin-OA OA(16,8,3,2)
(

216

8

)
≈ 8.4 · 1033

((16
8

)
8

)
≈ 1.8 · 1028

OA(16,8,2,4)
(

216

8

)
≈ 8.4 · 1033

((16
8

)
8

)
≈ 1.8 · 1028

OA(16,15,2,4)
(

216

15

)
≈ 1.3 · 1060

((16
8

)
15

)
≈ 3.3 · 1049

4.2. Experimental parameters

Table 1 reports the problem instances tested in our experiments for
each of the three considered optimization problems. The three problems
in the table are respectively identified in the first column by the names
Bal-NL for highly nonlinear balanced Boolean functions, Bent for bent
functions and Bin-OA for binary orthogonal arrays. The second column
reports the problem instances considered for each problem, which are
characterized by the number of variables n for the problems Bal-NL and
Bent and by the set of parameters OA(2n, k, t, 𝜆) for the Bin-OA prob-
lem. The third and fourth columns report, for each problem instance,
the size of the corresponding search space respectively when one-point
crossover is used (UNB Size) and when balanced crossover operators
are adopted (BAL size). The details for the computation of the search
space sizes can be found in Ref. [12]. It can be remarked from Table 1
that for the two Boolean functions problems (Bal-NL and Bent) the use
of balanced crossover operators yields a reduction of the search space
between one and two orders of magnitude. On the other hand, for the
Bin-OA problem the reduction is much more significant.

For each problem instance, we ran our steady state GA with each of
the four crossover operators for R = 50 experimental runs. Moreover,
for each balanced operator we performed a separate set of R = 50
runs both for the “left-to-right” and the “shuffling” versions. Hence, we
tested 7 crossover operators for a total of 7 · 3 · 50 = 1050 experimen-
tal runs for each of the three optimization problems. Each GA exper-
iment used a population size of P = 50 individuals, tournament size
t = 3 and stopped after fit = 500000 fitness evaluations. Additionally,
we employed a mutation probability of 0.7 for the Bal-NL and the Bent
problems and of 0.2 for the Bin-OA problem. We chose these particular
parameter values in order to compare our balanced Boolean functions
and bent functions results with those reported in Ref. [17], and our OA
results with those of [12].

The research hypotheses that we tested with our experiments are as
follows:

• H1: One-point crossover has a worse performance than any of the
three balanced crossover operators.

• H2: The shuffling versions of the counter-based and zero-length
crossover have a better performance than their “left-to-right” coun-
terparts.

• H3: There is no statistical significant difference between the shuf-
fling and the “left-to-right” versions of the map-of-ones crossover.

In order to settle the research hypotheses above when observation
of the results plots was not sufficient, we employed the Mann-Whitney-
Wilcoxon test. The alternative hypothesis adopted was that the two dis-
tributions were not equal. More precisely, that the probability of a sam-

6

https://github.com/rymoah/BalancedCrossoverGA
https://github.com/rymoah/BalancedCrossoverGA

L. Manzoni et al.

Fig. 1. Results of the Balanced Boolean functions problem, n = 6 instance.

Fig. 2. Results of the Balanced Boolean functions problem, n = 7 instance.

ple a from the first distribution exceeding a sample b from the second
distribution is different from the probability of b exceeding a. The sig-
nificance value 𝛼 for the statistical tests was set to 0.01.

5. Results

The results of the experiments are summarized in Figs. 1–9. Each
figure represents one of the three problem instances of the three consid-
ered optimization problems. The boxplots show the median, minimum,
maximum, first and third quartiles (excluding outliers) of the fitness
values of the best individuals reached at the end of the experimental
runs with a particular crossover operator. In all figures, the acronyms
OP, CP, ZL and MoO respectively stand for one-point, counter-based,
zero-length and map-of-ones crossover, with the “w/s” suffix indicating
the shuffling versions of the balanced operators.

5.1. Balanced Boolean functions

Figs. 1–3 depict the results obtained for the balanced Boolean func-
tions problem.

Fig. 3. Results of the Balanced Boolean functions problem, n = 8 instance.

Fig. 4. Results of the bent functions problem, n = 6 instance.

From the results for n = 6, it is possible to observe that all crossover
operators have the same median fitness of 26, which corresponds to
the maximum nonlinearity achievable by balanced functions of 6 vari-
ables. Although the results obtained by one-point crossover seem to
be more dispersed towards lower values of nonlinearity, the statistical
tests show no significant differences between its distribution and those
of the “left-to-right” versions of the balanced operators. On the other
hand, one-point crossover performs worse than the shuffling versions
of all balanced operators (p-values of 6.30 · 10−5, 0.0003, and 0.00013
respectively for the comparisons OP-CB w/s, OP-ZL w/s and OP-MoO
w/s). On the other hand, for the n = 7 instance one-point crossover
performs worse than all other balanced crossover operators, both shuf-
fling and left-to-right versions. Beside being confirmed by the statistical
tests, this can also be remarked by the boxplots in Fig. 2, where the
median fitness scored by OP is lower than the medians of the balanced
operators. The situation is about the same for n = 8 variables, where
OP performs worse than all other balanced operators except when com-
paring it with the shuffling version of the zero-length crossover, since
the statistical tests did not yield any significant difference between their

7

L. Manzoni et al.

Fig. 5. Results of the bent functions problem, n = 8 instance.

Fig. 6. Results of the bent functions problem, n = 10 instance.

performances. Remark that, although one-point crossover produced a
maximum best fitness of 113 which is higher than the one scored by
the balanced operators, this does not correspond to a balanced solution
(since the nonlinearity of balanced functions must be even).

Regarding the comparison between the left-to-right and shuffling
versions of the balanced crossover operators over this problem, we
detected a statistically significant difference only for the counter-based
crossover over the n = 6 and n = 7 instances, with the shuffling ver-
sion performing better (p-values of 0.0002 and 0.0065 respectively). In
particular, the counter-based crossover with shuffle is the only operator
reaching a 100% success rate for the n = 6 instance, since all best indi-
viduals achieved the maximum fitness value of 26. However, when con-
sidering all three problem instances, the map-of-ones crossover seems to
be the most robust operator, since from the boxplots it has the smallest
dispersion. Moreover, the shuffling version of the map-of-one operator
achieved the maximum nonlinearity value of 56 for balanced Boolean
functions of n = 7 variables.

Fig. 7. Results of the OA problem, (16,8,2,4) instance.

Fig. 8. Results of the OA problem, (16,8,3,2) instance.

5.2. Bent functions

Figs. 4–6 report the results for the bent functions problem.
For the n = 6 instance there is no clear distinction among the box-

plots of the different crossover operators, although it can be seen that
balanced operators (in particular, left-to-right counter-based and both
versions of map-of-ones) are the ones reaching the optimal nonlinear-
ity value of 28. We observed moreover that one-point crossover per-
forms worse in the statistical tests than the left-to-right version of map-
of-ones and the shuffling versions of all balanced operators (p-values
respectively of 0.0008, 0.0008, 0.0009 and 2.45 · 10−5). Similarly to the
results obtained for the balanced Boolean functions problem, the situ-
ation changes for the n = 8 instance. In this case, OP performs worse
than all other crossover operators, again with the exception of the shuf-
fling version of the zero-length crossover operator, where no statisti-
cally significant difference arose. This observation is also supported for
n = 10 variables, where there are no significant differences between
OP and both versions of ZL. On the other hand, OP performs worse
than both versions of CB and MoO (p-values respectively of 9.98 · 10−6,

8

L. Manzoni et al.

Fig. 9. Results of the OA problem, (16,15,2,4) instance.

1.93 · 10−15, 7.56 · 10−5 and 1.14 · 10−12).
Concerning the balanced operators, we observed no statistically sig-

nificant differences between their left-to-right and shuffling versions,
except for the zero-length crossover in the n = 8 instance. In this case,
the shuffling version fared worse than the left-to-right counterpart (p-
value of 0.0044). Analogously to the previous optimization problem,
the map-of-ones crossover resulted to be the best performer, obtaining
statistically significant differences in all comparisons with the other bal-
anced operators over all three problem instances, except for the n = 8
case with the left-to-right counter-based crossover.

5.3. Binary orthogonal arrays

Figs. 4–6 report the boxplots for the results obtained on the orthog-
onal arrays problem. Recall from Section 3.3 that this is a minimiza-
tion problem. Hence, it can be clearly seen from the boxplots that one-
point crossover scored the worse performance over all three problem
instances. As a matter of fact, beside never converging to an optimal
solution, all OP quantiles are substantially higher than those featured
by the distributions of the balanced operators.

Comparing the left-to-right and shuffling versions of the balanced
operators, we can observe from the boxplots that the shuffle operation
actually worsens the performance of the counter-based and zero-length
crossover over all instances. On the other hand, the statistical tests did
not detect any significant difference between the left-to-right and shuf-
fling versions of the map-of-ones operator in any problem instance.

This left us with four crossover operators, namely left-to-right CB
and ZL, and both versions of MoO. Among them, however, no signifi-
cant differences have been observed through the statistical tests, in any
of the three problem instances.

6. Discussion

In this section, we discuss the main findings that can be deduced
from the results reported in the previous section, especially with respect
to the research hypotheses laid out in Section 4.2. Additionally, we
compare our results with those obtained by two recent works in the
literature, namely [17] for the balanced Boolean functions and bent
functions problems and [12] for the orthogonal arrays problem.

6.1. Insights gained from the results

The results presented in Sections 5.1, 5.2 and 5.3 showed that one-
point crossover overall scored as the worst performer among all tested
operators. The only exceptions are represented by the n = 6 instances
of the balanced Boolean functions and bent functions problems, where
the performance of one-point was not distinguishable from that of the
counter-based and zero-length operators, and by the n = 8 instances,
where no significant differences between one-point and zero-length
crossover could be observed. On the other hand, over the OA prob-
lem one-point crossover is clearly worse than any balanced operator,
without even the need to resort to statistical tests for settling the ques-
tion.

Hence, the main insight that we gain from these observations is that
hypothesis H1, i.e. one-point crossover has a worse performance than
any of the three balanced crossover operators, can be considered largely
confirmed by our experiments. Using an unconstrained crossover oper-
ator such as one-point seems to be a bad choice especially in those
optimization problems where the fitness function heavily relies on the
balancedness property of the individuals, such as in the OA case. As a
matter of fact, the main term of fit3 actually measures the balanced-
ness of submatrices, not only of the single columns. On the other hand,
in problems where the optimization effort is not only focused on the
balancedness property, as in the balanced Boolean functions and bent
functions cases, the advantage of balanced operators over one-point is
less clear on small problem instances. This is probably due to the suffi-
ciently limited size of the search space for the n = 6 instance, which
allows also one-point crossover to converge relatively easily to optimal
solutions.

The indistinguishability between one-point and zero-length
crossover over the n = 8 and n = 10 instances for these two prob-
lems, however, seems to indicate that the latter is not a suitable opera-
tor for optimization problems concerning the cryptographic properties
of Boolean functions. The reason could lie in the particular represen-
tation adopted for this operator, which encodes the sequences of adja-
cent zeros composing a truth table. Possibly, highly nonlinear and bent
Boolean functions could have a “fragmented” truth table without long
runs of zeros, hence making this encoding less efficient for these prob-
lems. As far as we are aware there are no works in the literature that
investigate the distribution of run lengths in the truth tables of highly
nonlinear and bent functions. Hence, this could represent an interesting
direction for future research to test the “fragmentation” conjecture.

The second main remark that we can obtain from our experiments
concerns the ordering bias of the “left-to-right” versions of our crossover
operators. Surprisingly enough, we found out not only that the shuf-
fling operation does not give any advantage over the Boolean functions
problems with the counter-based and zero-length crossovers, but also
that shuffling actually damages their performances over the OA prob-
lem. Therefore, we can reasonably assert that our experiments disprove
hypothesis H2, i.e.the shuffling versions of the counter-based and zero-
length crossover have a better performance than their “left-to-right”
counterparts. On the other hand, since in our results we found no sta-
tistically significant differences between the “left-to-right” and shuffling
versions of the map-of-ones operator, we can consider hypothesis H3
confirmed.

The reason for the worse performances scored by counter-based and
zero-length crossovers with shuffling on the OA problem could reside
in the particular structure of this optimization problem. Indeed, the fit-
ness function fit3 tries to minimize the number of repetitions of t-tuples
going beyond the index 𝜆. However, crossover is applied column-wise
on the Boolean matrices represented by the parents, and when shuffling
is adopted, each column of the child is created using a different random
permutation of the positions. This could pose a problem since if two
parents have a good fitness value on a particular subset of t columns,
changing the order of positions when crossing the single column could
worsen the multiplicities of the t-tuples, thus creating a child with worse

9

L. Manzoni et al.

Table 2
Median fitness values comparison between our GA with
map-of-ones crossover and the algorithms used in Ref. [17].

Problem Instance MoO GAb CLONALGb opt-IAb

Bal-NL n = 6 26 26 26 26
n = 8 112 112 112 112

Bent n = 6 26 26 28 28
n = 8 112 114 114 114
n = 10 474 478 478 476

Table 3
Success rates comparison between our GA with map-of-ones
crossover and the algorithms used in Ref. [12].

Problem Instance MoO GA-CB GP

Bin-OA OA(16,8,2,4) 50 27 100
OA(16,8,3,2) 4 3 100
OA(16,15,2,4) 0 0 93

fitness. On the other hand, the “left-to-right” version does not have this
problem, since it adopts always the same order to copy the positions of
the columns. More specifically, we suspect that there is nothing special
about the left-to-right ordering: the important thing is that in the OA
problem the same ordering of positions should be used over all columns,
instead of different ones. It would be interesting to investigate this idea
in future research by performing further experiments with fixed posi-
tions orderings other than the left-to-right one.

6.2. Comparison with other algorithms

As noted in Section 4.2, we selected the parameter values for the
GA such as mutation probabilities, population sizes, numbers of fitness
evaluations and runs in order to match the experimental settings of two
recent works in the literature, namely Picek et al.‘s work about immuno-
logical algorithms for evolving cryptographic Boolean functions [17]
and Mariot et al.‘s paper about the design of binary orthogonal arrays
through evolutionary algorithms [12]. For completeness, we report in
this section a comparison of our results with these two works. How-
ever, a perfect comparison is not feasible due to some small differences
concerning both the adopted fitness functions and the structure of the
optimization algorithms. Moreover, we recall that the main focus of
this paper is not about finding a balanced crossover operator that can
outperform all other state-of-the-art algorithms, but rather analyzing
whether balanced crossover operators give an advantage over unbal-
anced ones.

In Table 2 we present the comparison of the median fitness values
for balanced and bent Boolean functions. Among our crossover opera-
tors, we considered only the best performing one, that is, the “left-to-
right” map-of-ones crossover. From Ref. [17] we considered the follow-
ing optimization methods: Genetic Algorithms (GAb), Clonal Selection
Algorithms (CLONALGb), and Optimization Immune Algorithms (opt-
IAb), all using a binary encoding of the solutions. We discarded Evo-
lution Strategies since they resulted to be the worst performers among
all considered methods in Ref. [17], and all algorithms employing the
floating point representation, since it is out of scope for the comparison.
Regarding the balanced Boolean functions problem, we observe that all
medians coincide over all problem instances and optimization methods.
This can be interpreted as the fact that the problem can be successfully
approached in different ways through optimization algorithms whose
parameters are carefully tuned or using ad-hoc variation operators. On
the other hand the map-of-ones crossover performs slightly worse than
the other considered methods on the bent functions problem, with a
more pronounced difference in the median fitness for higher number
of variables. Table 3 compares the success rates for the OA problem
between our map-of-ones crossover and the Genetic Algorithms with

counter-based crossover (GA-CB) and Genetic Programming (GP) pro-
posed in Ref. [12]. One can remark that over the smallest problem
instance the map-of-ones crossover converges more frequently than the
GA-CB algorithm. In the other instances, however, both algorithms have
difficulties in generating optimal solutions over all considered runs. In
particular, neither GA-CB nor the map-of-ones crossover can match the
performances of GP, which achieves a full success rates in two out
of three instances, while it converges 93% of the time on the largest
instance. Thus, the difference in the performances between GA and GP
does not seem to be due to the particular variation operator employed,
but rather to something about the GP representation of the candidate
solutions.

7. Conclusions

In this paper, we investigated the effect of three balanced crossover
operators in constraining the search space explored by a steady state
GA over three combinatorial optimization problems from the domains
of cryptography and combinatorial designs. The considered operators
were the counter-based, zero-length, and map-of-ones crossovers and
all of them were studied in both in their “left-to-right” and shuffled
variants.

Regarding the novelty of the crossover operators, the counter-
based crossover operator is a slightly modified version of the crossover
designed by Millan et al. [14], while to the best of our knowledge the
zero-lengths and mapofones crossovers are proposed for the first time
in the present work.

We explored three different research questions: whether there is an
advantage in using balanced crossover operators as opposed to one-
point crossover, whether the shuffled versions of the counter-based and
zero-length crossovers perform better than their “left-to-right” versions,
and whether the shuffled version of the map-of-ones crossover performs
as its “left-to-right” version.

The Mann-Whitney-Wilcoxon test was used to compare the perfor-
mances of these balanced operators with that of one-point crossover,
which does not enforce any constraint on the Hamming weight of the
bitstrings. The obtained results showed that, in general, the balanced
crossovers perform better than the one-point crossover, showing the
suitability of the proposed operators for constraining the search space.

We also noticed that using shuffling either produces no significant
difference or actually damages the performances in the case of the
counter-based and zero-length crossover, showing that the their “left-
to-right” versions might actually be more suitable. However, for the
map-of-ones crossover the use of shuffling neither hinder nor improve
the search.

Multiple research avenues remain open for future research. The
proposed balanced crossover operators, while better than one-point
crossover, does not obtain state of the art performances in tackling
combinatorial optimization problems related to cryptography and com-
binatorial design theory. Further improving and tuning our crossover
operators is then an essential step in ensuring their practical applicabil-
ity in the future. Moreover, it would be interesting to discover the effect
on the shape of the fitness landscape induced by the different balanced
crossover operators proposed in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.swevo.2020.100646.

References

[1] Claude Carlet, Boolean functions for cryptography and error-correcting codes, in:
Y. Crama, P.L. Hammer (Eds.), Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, Cambridge University Press, New York, 2011,
pp. 257–397.

10

https://doi.org/10.1016/j.swevo.2020.100646
https://doi.org/10.1016/j.swevo.2020.100646
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref1

L. Manzoni et al.

[2] Jiah-Shing Chen, Jia-Leh Hou, A combination genetic algorithm with applications
on portfolio optimization, IEA/AIE, in: Lecture Notes in Computer Science, vol.
4031, Springer, 2006, pp. 197–206.

[3] Jiah-Shing Chen, Jia-Li Hou, Shih-Min Wu, Ya-Wen Chang-Chien, Constructing
investment strategy portfolios by combination genetic algorithms, Expert Syst.
Appl. 36 (2) (2009) 3824–3828.

[4] Salvador García, Daniel Molina, Manuel Lozano, Francisco Herrera, A study on the
use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a
case study on the cec’2005 special session on real parameter optimization, J.
Heuristics 15 (6) (2009) 617–644.

[5] A Samad Hedayat, Neil James Alexander Sloane, John Stufken, Orthogonal Arrays:
Theory and Applications, Springer Science & Business Media, 2012.

[6] John H. Holland, Adaptation in Natural and Artificial Systems: an Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, U
Michigan Press, 1975.

[7] Hans Kellerer, Pferschy Ulrich, David Pisinger, Knapsack Problems, Springer,
2004.

[8] Donald E. Knuth, The Art of Computer Programming, vol. 4a, combinatorial
algorithms, 2011. part 1.

[9] Luca Manzoni, Luca Mariot, Eva Tuba, Does constraining the search space of GA
always help?: the case of balanced crossover operators, in: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, GECCO 2019,
Prague, Czech Republic, July 13-17, 2019, 2019, pp. 151–152.

[10] Luca Mariot, Alberto Leporati, A genetic algorithm for evolving plateaued
cryptographic boolean functions, in: Theory and Practice of Natural Computing -
Fourth International Conference, TPNC 2015, Mieres, Spain, December 15-16,
2015. Proceedings, 2015, pp. 33–45.

[11] Luca Mariot, Stjepan Picek, Domagoj Jakobovic, Alberto Leporati, Evolutionary
algorithms for the design of orthogonal Latin squares based on cellular automata,
in: GECCO, ACM, 2017, pp. 306–313.

[12] Luca Mariot, Stjepan Picek, Domagoj Jakobovic, Alberto Leporati, Evolutionary
search of binary orthogonal arrays, PPSN (1), in: Lecture Notes in Computer
Science, vol. 11101, Springer, 2018, pp. 121–133.

[13] Thorsten Meinl, Michael R. Berthold, Crossover operators for multiobjective
k-subset selection, in: GECCO, ACM, 2009, pp. 1809–1810.

[14] William Millan, Andrew J. Clark, Ed Dawson, Heuristic design of cryptographically
strong balanced boolean functions, EUROCRYPT, in: Lecture Notes in Computer
Science, vol. 1403, Springer, 1998, pp. 489–499.

[15] Stjepan Picek, Marin Golub, Domagoj Jakobovic, Evaluation of crossover operator
performance in genetic algorithms with binary representation, ICIC (3), in: LNCS,
vol. 6840, Springer, 2011, pp. 223–230.

[16] Stjepan Picek, Domagoj Jakobovic, Marin Golub, On the recombination operator
in the real-coded genetic algorithms, in: Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2013, Cancun, Mexico, June 20-23, 2013, 2013,
pp. 3103–3110.

[17] Stjepan Picek, Dominik Sisejkovic, Domagoj Jakobovic, Immunological algorithms
paradigm for construction of boolean functions with good cryptographic
properties, Eng. Appl. of AI 62 (2017) 320–330.

[18] Vasiliy Sachnev, Sundaram Suresh, An improved sample balanced genetic
algorithm and extreme learning machine for accurate alzheimer disease diagnosis,
JCSE 10 (4) (2016).

[19] Vasily Sachnev, B.S. Mahanand, A cognitive ensemble classifier based on risk
sensitive hinge loss function for alzheimer’s disease diagnosis in early stages, in:
2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2018,
pp. 807–812.

[20] Douglas R. Stinson, Combinatorial designs - Constructions and Analysis, Springer,
2004.

11

http://refhub.elsevier.com/S2210-6502(19)30297-4/sref2
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref3
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref4
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref5
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref6
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref7
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref8
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref9
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref10
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref11
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref12
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref13
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref14
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref15
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref16
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref17
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref18
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref19
http://refhub.elsevier.com/S2210-6502(19)30297-4/sref20

	Balanced crossover operators in Genetic Algorithms
	1. Introduction
	2. Balanced crossover operators
	2.1. Counter-based crossover
	2.2. Zero lengths crossover
	2.3. Map of ones crossover
	2.4. Ordering bias and positions shuffling

	3. Optimization problems
	3.1. Nonlinear Balanced Boolean functions
	3.2. Bent functions
	3.3. Binary orthogonal arrays

	4. Experimental setting
	4.1. Genetic algorithm details
	4.2. Experimental parameters

	5. Results
	5.1. Balanced Boolean functions
	5.2. Bent functions
	5.3. Binary orthogonal arrays

	6. Discussion
	6.1. Insights gained from the results
	6.2. Comparison with other algorithms

	7. Conclusions
	Appendix A. Supplementary data
	References

