We produce a detailed proof of a result stated in "F. Obersnel and P. Omari, Period two implies chaos for a class of ODEs, Proc. Amer. Math. Soc, 135 (2007), 2055-2058" concerning scalar time-periodic first order differential inclusions. Such a result shows that the existence of just one subharmonic implies the existence of large sets of subharmonics of all given orders.

Period two implies any period for a class of differential inclusions

OBERSNEL, Franco;OMARI, PIERPAOLO
2006-01-01

Abstract

We produce a detailed proof of a result stated in "F. Obersnel and P. Omari, Period two implies chaos for a class of ODEs, Proc. Amer. Math. Soc, 135 (2007), 2055-2058" concerning scalar time-periodic first order differential inclusions. Such a result shows that the existence of just one subharmonic implies the existence of large sets of subharmonics of all given orders.
2006
First order scalar differential inclusion; periodic solution; subharmonic solution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2337049
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact