High temperature PEM (HTPEM) fuel cell based on polybenzimidazole polymer (PBI) and phosphoric acid, can be operated at temperature between120°C and 180°C. Reactants humidification is not required and CO content up to 1% in fuel can be tolerated, affecting only marginally performance. This is what makes HTPEM fuel cells very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. This paper aims to present the preliminary experimental results obtained on a HTPEM fuel cell fed with LPG using a compact steam reformer. The analysis focus on the reformer start up transient, on the influence of the steam to carbon ratio on reformate CO content and on the single fuel cell performance at different operating conditions. By analyzing the mass and energy balances of the fuel processor, fuel cell system, and balance-of-plant, a previously developed system simulation model has been used to provide critical assessment on the conversion efficiency for a 1 kWel system. The current study attempts to extend the previously published analyses of integrated HTPEM fuel cell systems.

Experimental and Theoretical Performance Analysis of an High Temperature PEM Fuel Cell fed With LPG Using a Compact Steam Reformer

ZULIANI, NICOLA;TACCANI, RODOLFO;RADU, ROBERT
2011-01-01

Abstract

High temperature PEM (HTPEM) fuel cell based on polybenzimidazole polymer (PBI) and phosphoric acid, can be operated at temperature between120°C and 180°C. Reactants humidification is not required and CO content up to 1% in fuel can be tolerated, affecting only marginally performance. This is what makes HTPEM fuel cells very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. This paper aims to present the preliminary experimental results obtained on a HTPEM fuel cell fed with LPG using a compact steam reformer. The analysis focus on the reformer start up transient, on the influence of the steam to carbon ratio on reformate CO content and on the single fuel cell performance at different operating conditions. By analyzing the mass and energy balances of the fuel processor, fuel cell system, and balance-of-plant, a previously developed system simulation model has been used to provide critical assessment on the conversion efficiency for a 1 kWel system. The current study attempts to extend the previously published analyses of integrated HTPEM fuel cell systems.
2011
9780791854693
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2632343
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact