This paper deals with the problem of designing a robust fault detection methodology for a class of input-output, uncertain dynamical distributed parameter systems, namely mechanical elastodynamic systems, which are representative of a whole class of problems related to on-line health monitoring of mechanical and civil engineering structures. The proposed approach does not require full state measurements and is robust to measuring, modeling and numerical errors, thanks to a time varying detection threshold. In order to avoid the problems associated with classical discretization techniques for distributed parameter systems, which can lead to numerical errors difficult to bound a priori, and thus higher thresholds, a suitable structure-preserving algebraic approach, called Cell Method, will be employed. This method consists in writing the equations of a distributed parameter system directly in discrete form, avoiding the usual discretization process and leading to a symplectic, that is energy preserving, numerical scheme.

An Algebraic Approach for Robust Fault Detection of Input-Output Elastodynamic Distributed Parameter Systems

FERRARI, RICCARDO;PARISINI, Thomas;
2013-01-01

Abstract

This paper deals with the problem of designing a robust fault detection methodology for a class of input-output, uncertain dynamical distributed parameter systems, namely mechanical elastodynamic systems, which are representative of a whole class of problems related to on-line health monitoring of mechanical and civil engineering structures. The proposed approach does not require full state measurements and is robust to measuring, modeling and numerical errors, thanks to a time varying detection threshold. In order to avoid the problems associated with classical discretization techniques for distributed parameter systems, which can lead to numerical errors difficult to bound a priori, and thus higher thresholds, a suitable structure-preserving algebraic approach, called Cell Method, will be employed. This method consists in writing the equations of a distributed parameter system directly in discrete form, avoiding the usual discretization process and leading to a symplectic, that is energy preserving, numerical scheme.
2013
9783952417348
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2699235
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact