The class of composite likelihood functions provides a flexible and powerful toolkit to carry out approximate inference for complex statistical models when the full likelihood is either impossible to specify or unfeasible to compute. However, the strenght of the composite likelihood approach is dimmed when considering hypothesis testing about a multidimensional parameter because the finite sample behavior of likelihood ratio, Wald, and score-type test statistics is tied to the Godambe information matrix. Consequently inaccurate estimates of the Godambe information translate in inaccurate p-values. In this paper it is shown how accurate inference can be obtained by using a fully nonparametric saddlepoint test statistic derived from the composite score functions. The proposed statis- tic is asymptotically chi-square distributed up to a relative error of second order and does not depend on the Godambe information. The validity of the method is demonstrated through simulation studies.

Composite Likelihood Inference by Nonparametric Saddlepoint Tests

LUNARDON, NICOLA;
2013

Abstract

The class of composite likelihood functions provides a flexible and powerful toolkit to carry out approximate inference for complex statistical models when the full likelihood is either impossible to specify or unfeasible to compute. However, the strenght of the composite likelihood approach is dimmed when considering hypothesis testing about a multidimensional parameter because the finite sample behavior of likelihood ratio, Wald, and score-type test statistics is tied to the Godambe information matrix. Consequently inaccurate estimates of the Godambe information translate in inaccurate p-values. In this paper it is shown how accurate inference can be obtained by using a fully nonparametric saddlepoint test statistic derived from the composite score functions. The proposed statis- tic is asymptotically chi-square distributed up to a relative error of second order and does not depend on the Godambe information. The validity of the method is demonstrated through simulation studies.
Empirical likelihood methods; Godambe information; Likelihood ratio adjustments; Nonparametric inference; Pairwise likelihood; Relative error; Robust tests; Saddlepoint test; Small sample inference
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2708488
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact