State-of-the-art ships focus on enhancing vessel performance, lower emissions, optimize space on board and save fuel. This paper describes an innovative marine solution in which the same electric machine can be operated as a conventional shaft generator and also as a variable speed propulsion motors. The distinctive design (patent pending) consists of a special synchronous machine provided with two separate exciters (one AC and the second DC) each capable to energize the same main rotor field through two independent rotating rectifiers. Whilst the conventional PTO/PTI systems may use the synchronous machine in a very narrow speed range - the presence of the independent AC exciter allows to energize the main field from zero rpm. The propeller can therefore be fully electrically operated. The dual-excitation arrangement is described in the paper highlighting its benefits compared to the conventional design. Numerical simulations are presented to assess the possible electromagnetic interactions between the two coaxial rotating excitation systems. Extensive testing campaign validated the design expectations.

Hybrid synchronous motor-alternator with dual AC/DC excitation system for shipboard generation and propulsion applications

TESSAROLO, ALBERTO
2014-01-01

Abstract

State-of-the-art ships focus on enhancing vessel performance, lower emissions, optimize space on board and save fuel. This paper describes an innovative marine solution in which the same electric machine can be operated as a conventional shaft generator and also as a variable speed propulsion motors. The distinctive design (patent pending) consists of a special synchronous machine provided with two separate exciters (one AC and the second DC) each capable to energize the same main rotor field through two independent rotating rectifiers. Whilst the conventional PTO/PTI systems may use the synchronous machine in a very narrow speed range - the presence of the independent AC exciter allows to energize the main field from zero rpm. The propeller can therefore be fully electrically operated. The dual-excitation arrangement is described in the paper highlighting its benefits compared to the conventional design. Numerical simulations are presented to assess the possible electromagnetic interactions between the two coaxial rotating excitation systems. Extensive testing campaign validated the design expectations.
2014
978-1-4799-4389-0
978-1-4799-4389-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2829454
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact