A fault-tolerant machine used for safety-critical tasks must a) guarantee at least a reduced-performance operation in case of partial machine fault and b) guarantee avoidance of drive mechanical jam/stall in case of total machine fault, to allow for the intervention of the back-up systems. Classical hydrostatic transmissions used on board ships for critical tasks such as rudder and stabilizing fin steering gears fulfill both the requirements a), b) above, but recent proposals for substitution with full-electric drives (rotary motors coupled with multistage reduction gears) usually do not. Especially the requirement b) needs particular attention and increased complexity when dealing with geared drives. This paper proposes a linear permanent-magnet direct drive fulfilling both the requirements above, for (but not limited to) rudder/fin steering gears. The absence of gears grants the requirement b), whereas the full-modular structure satisfies a), with independently fed stator modules and multiple inverters. This paper addresses some fault scenarios including electrical failures, in the machine winding (short-circuited coils) and in the inverters (trip of one or more units). The performance degradation is studied and assessed for the cases considered by both simulations and measurements on a prototype.

Study of faulty scenarios for a fault-tolerant multi-inverter-fed linear permanent magnet motor with coil short-circuit or inverter trip

TESSAROLO, ALBERTO;MEZZAROBBA, MARIO;BORTOLOZZI, MAURO;
2014

Abstract

A fault-tolerant machine used for safety-critical tasks must a) guarantee at least a reduced-performance operation in case of partial machine fault and b) guarantee avoidance of drive mechanical jam/stall in case of total machine fault, to allow for the intervention of the back-up systems. Classical hydrostatic transmissions used on board ships for critical tasks such as rudder and stabilizing fin steering gears fulfill both the requirements a), b) above, but recent proposals for substitution with full-electric drives (rotary motors coupled with multistage reduction gears) usually do not. Especially the requirement b) needs particular attention and increased complexity when dealing with geared drives. This paper proposes a linear permanent-magnet direct drive fulfilling both the requirements above, for (but not limited to) rudder/fin steering gears. The absence of gears grants the requirement b), whereas the full-modular structure satisfies a), with independently fed stator modules and multiple inverters. This paper addresses some fault scenarios including electrical failures, in the machine winding (short-circuited coils) and in the inverters (trip of one or more units). The performance degradation is studied and assessed for the cases considered by both simulations and measurements on a prototype.
978-1-4799-4389-0
978-1-4799-4389-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2829468
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 5
social impact