The problem of extracting knowledge from large volumes of unstructured textual information has become increasingly important. We consider the problem of extracting text slices that adhere to a syntactic pattern and propose an approach capable of generating the desired pattern automatically, from a few annotated examples. Our approach is based on Genetic Programming and generates extraction patterns in the form of regular expressions that may be input to existing engines without any post-processing. Key feature of our proposal is its ability of discovering automatically whether the extraction task may be solved by a single pattern, or rather a set of multiple patterns is required. We obtain this property by means of a separate-and-conquer strategy: once a candidate pattern provides adequate performance on a subset of the examples, the pattern is inserted into the set of final solutions and the evolutionary search continues on a smaller set of examples including only those not yet solved adequately. Our proposal outperforms an earlier state-of-the-art approach on three challenging datasets.
Learning Text Patterns using Separate-and-Conquer Genetic Programming
BARTOLI, Alberto;DE LORENZO, ANDREA;MEDVET, Eric;TARLAO, FABIANO
2015-01-01
Abstract
The problem of extracting knowledge from large volumes of unstructured textual information has become increasingly important. We consider the problem of extracting text slices that adhere to a syntactic pattern and propose an approach capable of generating the desired pattern automatically, from a few annotated examples. Our approach is based on Genetic Programming and generates extraction patterns in the form of regular expressions that may be input to existing engines without any post-processing. Key feature of our proposal is its ability of discovering automatically whether the extraction task may be solved by a single pattern, or rather a set of multiple patterns is required. We obtain this property by means of a separate-and-conquer strategy: once a candidate pattern provides adequate performance on a subset of the examples, the pattern is inserted into the set of final solutions and the evolutionary search continues on a smaller set of examples including only those not yet solved adequately. Our proposal outperforms an earlier state-of-the-art approach on three challenging datasets.File | Dimensione | Formato | |
---|---|---|---|
2015_EuroGP_LearningMultiPatterns.pdf
accesso aperto
Descrizione: pdf post-print
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
275.71 kB
Formato
Adobe PDF
|
275.71 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.