Consumer reviews are an important information resource for people and a fundamental part of everyday decision-making. Product reviews have an economical relevance which may attract malicious people to commit a review fraud, by writing false reviews. In this work, we investigate the possibility of generating hundreds of false restaurant reviews automatically and very quickly. We propose and evaluate a method for automatic generation of restaurant reviews tailored to the desired rating and restaurant category. A key feature of our work is the experimental evaluation which involves human users. We assessed the ability of our method to actually deceive users by presenting to them sets of reviews including a mix of genuine reviews and of machine-generated reviews. Users were not aware of the aim of the evaluation and the existence of machine-generated reviews. As it turns out, it is feasible to automatically generate realistic reviews which can manipulate the opinion of the user.

"Best Dinner Ever!!!": Automatic Generation of Restaurant Reviews with LSTM-RNN

BARTOLI, Alberto;DE LORENZO, ANDREA;MEDVET, Eric;TARLAO, FABIANO;
2016-01-01

Abstract

Consumer reviews are an important information resource for people and a fundamental part of everyday decision-making. Product reviews have an economical relevance which may attract malicious people to commit a review fraud, by writing false reviews. In this work, we investigate the possibility of generating hundreds of false restaurant reviews automatically and very quickly. We propose and evaluate a method for automatic generation of restaurant reviews tailored to the desired rating and restaurant category. A key feature of our work is the experimental evaluation which involves human users. We assessed the ability of our method to actually deceive users by presenting to them sets of reviews including a mix of genuine reviews and of machine-generated reviews. Users were not aware of the aim of the evaluation and the existence of machine-generated reviews. As it turns out, it is feasible to automatically generate realistic reviews which can manipulate the opinion of the user.
File in questo prodotto:
File Dimensione Formato  
07817147.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 643.51 kB
Formato Adobe PDF
643.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2886621
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact