This paper proposes a comprehensive approach for supporting clustering-based spatio-temporal analysis of big atmospheric data via specializing on the interesting applicative setting represented by Greenhouse Gas Emissions (GGEs), a relevant instance of Big Data that empathize the Variety aspect of the well-known 3V Big Data axioms. In particular, in our research we consider GGEs from three EU countries, namely UK, France and Italy. The deriving Big Data Mining model turns to be useful for decision support processes in both the governmental and industrial contexts.

Clustering-based spatio-temporal analysis of big atmospheric data

CUZZOCREA, Alfredo Massimiliano;
2016

Abstract

This paper proposes a comprehensive approach for supporting clustering-based spatio-temporal analysis of big atmospheric data via specializing on the interesting applicative setting represented by Greenhouse Gas Emissions (GGEs), a relevant instance of Big Data that empathize the Variety aspect of the well-known 3V Big Data axioms. In particular, in our research we consider GGEs from three EU countries, namely UK, France and Italy. The deriving Big Data Mining model turns to be useful for decision support processes in both the governmental and industrial contexts.
9781450340632
9781450340632
http://portal.acm.org/
File in questo prodotto:
File Dimensione Formato  
Cuzzocrea 2016 Clustering.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 986.2 kB
Formato Adobe PDF
986.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2898328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact