This work demonstrates a novel approach to design and optimization of rare-earth free magnetic materials for targeted properties by effectively using various computational and statistical tools. From the open literature, we defined the alloying elements and bounds of their concentrations to develop a new system of Alnico alloys. Initial compositions of candidate alloys were generated using a quasi-random sequence generation algorithm. Response surface methodology approach was used to develop surrogate models to efficiently link alloy chemistry with desired macroscopic properties for these multi-component systems. The most accurate meta-models were used for multi-objective optimization of desired properties by utilizing various evolutionary approaches. Various statistical tools and pattern recognition techniques were used to determine patterns and correlations within the created dataset. Pareto-optimized candidate alloys were experimentally validated and used to improve the accuracy of the response surface generation used by the multi-objective optimizer to find the next generation of Pareto-optimal alloys. Results over the cycles show significant experimentally verified improvement in the properties of these alloys.

Multi-objective design and optimization of hard magnetic alloys free of rare earths

POLONI, CARLO;
2015-01-01

Abstract

This work demonstrates a novel approach to design and optimization of rare-earth free magnetic materials for targeted properties by effectively using various computational and statistical tools. From the open literature, we defined the alloying elements and bounds of their concentrations to develop a new system of Alnico alloys. Initial compositions of candidate alloys were generated using a quasi-random sequence generation algorithm. Response surface methodology approach was used to develop surrogate models to efficiently link alloy chemistry with desired macroscopic properties for these multi-component systems. The most accurate meta-models were used for multi-objective optimization of desired properties by utilizing various evolutionary approaches. Various statistical tools and pattern recognition techniques were used to determine patterns and correlations within the created dataset. Pareto-optimized candidate alloys were experimentally validated and used to improve the accuracy of the response surface generation used by the multi-objective optimizer to find the next generation of Pareto-optimal alloys. Results over the cycles show significant experimentally verified improvement in the properties of these alloys.
2015
9781510813939
File in questo prodotto:
File Dimensione Formato  
28157webtoc.pdf

accesso aperto

Descrizione: Indici del volume
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 420 kB
Formato Adobe PDF
420 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2901507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact