The age dependence of the time-based capnogram from normal, healthy subjects has not been quantitatively characterized. The existence of age dependence would impact the development and operation of automated quantitative capnographic tools. Here, we quantitatively assess the relationship between normal capnogram shape and age. Capnograms were collected from healthy subjects, and physiologically-based features (exhalation duration, end-tidal CO2 and time spent at this value, normalized time spent at end-tidal CO2, end-exhalation slope, and instantaneous respiratory rate) were computationally extracted. The mean values of the individual features over 30 exhalations were linearly regressed against subject age, accounting for inter-feature correlation. After data collection, 154 of 178 subjects were eligible for analysis, with an age range of 3-78 years (mean age 39, std. dev. 20 years). The Bonferroni-corrected joint 95% confidence intervals (CIs) of the regression line slopes contained the origin for five of six features (the remaining CI was only slightly offset from the origin). The associated individual r2 values for the regressions were all below 0.07. We conclude that age is not a significant explanatory factor in describing variations in the shape of the normal capnogram. This finding could be exploited in the design of automated methods for quantitative capnogram analysis across a range of ages.

Statistical analysis of the age dependence of the normal capnogram

Barbi, Egidio;
2017-01-01

Abstract

The age dependence of the time-based capnogram from normal, healthy subjects has not been quantitatively characterized. The existence of age dependence would impact the development and operation of automated quantitative capnographic tools. Here, we quantitatively assess the relationship between normal capnogram shape and age. Capnograms were collected from healthy subjects, and physiologically-based features (exhalation duration, end-tidal CO2 and time spent at this value, normalized time spent at end-tidal CO2, end-exhalation slope, and instantaneous respiratory rate) were computationally extracted. The mean values of the individual features over 30 exhalations were linearly regressed against subject age, accounting for inter-feature correlation. After data collection, 154 of 178 subjects were eligible for analysis, with an age range of 3-78 years (mean age 39, std. dev. 20 years). The Bonferroni-corrected joint 95% confidence intervals (CIs) of the regression line slopes contained the origin for five of six features (the remaining CI was only slightly offset from the origin). The associated individual r2 values for the regressions were all below 0.07. We conclude that age is not a significant explanatory factor in describing variations in the shape of the normal capnogram. This finding could be exploited in the design of automated methods for quantitative capnogram analysis across a range of ages.
File in questo prodotto:
File Dimensione Formato  
PDF Barbi IEEE.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2915584
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact