In this paper, experimental tests and numerical analyses conducted on an innovative angle bracket for Cross-Laminated Timber (CLT) structures subjected to tension and shear loads are presented. Such angle bracket represents an improvement of the available angle brackets manufactured by Rotho Blaas and was designed to increase the tensile capacity by adding inclined fully-threaded screws. Results of experimental tests carried out at Laboratory of Earthquake and Dynamic Engineering (LEDA) of the Enna Kore University are presented in terms of force-displacement curves. All the experimental tests are then simulated fusing a numerical model implemented in the FE solver ABAQUS. The influence of the mechanical behaviour of screws and nails on the angle bracket performance was then investigated, considering stiffnesses and strengths from both experimental programmes and codes of practice, and evaluating the importance of the Group Effect. The obtained force-displacement curve is compared with the experimental curves, showing a good accuracy of the proposed FE model. Experimental tests confirmed that fully-threaded screws increased the tensile capacity of the angle bracket.

Tensile and shear behaviour of an innovative angle bracket for CLT structures

Rinaldin, Giovanni;Fragiacomo, Massimo;
2018-01-01

Abstract

In this paper, experimental tests and numerical analyses conducted on an innovative angle bracket for Cross-Laminated Timber (CLT) structures subjected to tension and shear loads are presented. Such angle bracket represents an improvement of the available angle brackets manufactured by Rotho Blaas and was designed to increase the tensile capacity by adding inclined fully-threaded screws. Results of experimental tests carried out at Laboratory of Earthquake and Dynamic Engineering (LEDA) of the Enna Kore University are presented in terms of force-displacement curves. All the experimental tests are then simulated fusing a numerical model implemented in the FE solver ABAQUS. The influence of the mechanical behaviour of screws and nails on the angle bracket performance was then investigated, considering stiffnesses and strengths from both experimental programmes and codes of practice, and evaluating the importance of the Group Effect. The obtained force-displacement curve is compared with the experimental curves, showing a good accuracy of the proposed FE model. Experimental tests confirmed that fully-threaded screws increased the tensile capacity of the angle bracket.
File in questo prodotto:
File Dimensione Formato  
CON-01-05_Tensile_and_Shear_Behaviour_of_an_Innovative_Angle_Bracket_for_CLT_Structures_FullPaper.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2942968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact