Despite its large use, one major limitation of K-means algorithm is the impact of the initial seeding on the final partition. We propose a modified version, using the information contained in a co-association matrix obtained from clustering ensembles; such matrix is given as input for a set of pivotal methods, implemented in the pivmet R package, used to perform a pivot-based initialization step. Preliminary results concerning the comparison with the classical approach and other clustering methods are discussed.

Pivotal seeding for K-means based on clustering ensembles

Leonardo Egidi;Roberta Pappadà;Francesco Pauli;Nicola Torelli
2019-01-01

Abstract

Despite its large use, one major limitation of K-means algorithm is the impact of the initial seeding on the final partition. We propose a modified version, using the information contained in a co-association matrix obtained from clustering ensembles; such matrix is given as input for a set of pivotal methods, implemented in the pivmet R package, used to perform a pivot-based initialization step. Preliminary results concerning the comparison with the classical approach and other clustering methods are discussed.
File in questo prodotto:
File Dimensione Formato  
Pappada_Pivotal seeding for K-means based on clustering ensembles.pdf

Accesso chiuso

Descrizione: contributo con frontespizio e indice del volume
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 866.7 kB
Formato Adobe PDF
866.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2946994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact