A link between magmatism from Large Igneous Provinces (LIPs) and mass extinctions has been observed at leastin five occasions in the Phanerozoic. Volatile species such as S, C and halogen compounds severely impactedthe global environment, released both from melts and thermal metamorphism of volatile-rich sediments. It is stillchallenging to obtain quantitative estimates of the degassed volatiles for ancient magmatic systems, particularly inthe absence of melt inclusions. We propose to fill the gap of knowledge on sulfur partitioning between mineralsand melts, at the aim of using phenocrysts as probes of volatile contents in the melts from which they crystallized.Measuring a volatile concentration in natural minerals (chiefly clinopyroxene) and combining it with an experi-mentally determined partition coefficient (KD), the volatile load in basaltic equilibrium melts can be calculated.We measured a clinopyroxene/melt sulfur KD of 0.0009±0.0001 for basaltic experiments performed at conditionstypical of LIP basalts (FMQ-2; 800-1000 MPa; 1000 ̊-1350 ̊C), through ion microprobe (Nordsim). Basaltic ex-periments were also simultaneously analyzed for Cl and F. For these elements the measured clinopyroxene/meltKDs were more variable, 0.0071±0.0052 and 0.1985±0.087, respectively. Compatibility of sulfur, chlorine andfluorine in clinopyroxene from basaltic systems is markedly different (F>Cl>S), in agreement with what observedby previous studies, and the partition coefficient is well constrained around 0.001 for S. Application of the newlymeasured sulfur KD to samples from thoroughly-dated lava piles from the Deccan Traps and from the SiberianTraps sills reveal that most of the basalts were at or near sulfide saturation (up to ca. 2000 ppm for low fO2melts).

A crystal/melt partitioning study for sulfur and halogens: pyroxenes as probes for assessing gas loads in LIP magmas

De Min, Angelo;
2018-01-01

Abstract

A link between magmatism from Large Igneous Provinces (LIPs) and mass extinctions has been observed at leastin five occasions in the Phanerozoic. Volatile species such as S, C and halogen compounds severely impactedthe global environment, released both from melts and thermal metamorphism of volatile-rich sediments. It is stillchallenging to obtain quantitative estimates of the degassed volatiles for ancient magmatic systems, particularly inthe absence of melt inclusions. We propose to fill the gap of knowledge on sulfur partitioning between mineralsand melts, at the aim of using phenocrysts as probes of volatile contents in the melts from which they crystallized.Measuring a volatile concentration in natural minerals (chiefly clinopyroxene) and combining it with an experi-mentally determined partition coefficient (KD), the volatile load in basaltic equilibrium melts can be calculated.We measured a clinopyroxene/melt sulfur KD of 0.0009±0.0001 for basaltic experiments performed at conditionstypical of LIP basalts (FMQ-2; 800-1000 MPa; 1000 ̊-1350 ̊C), through ion microprobe (Nordsim). Basaltic ex-periments were also simultaneously analyzed for Cl and F. For these elements the measured clinopyroxene/meltKDs were more variable, 0.0071±0.0052 and 0.1985±0.087, respectively. Compatibility of sulfur, chlorine andfluorine in clinopyroxene from basaltic systems is markedly different (F>Cl>S), in agreement with what observedby previous studies, and the partition coefficient is well constrained around 0.001 for S. Application of the newlymeasured sulfur KD to samples from thoroughly-dated lava piles from the Deccan Traps and from the SiberianTraps sills reveal that most of the basalts were at or near sulfide saturation (up to ca. 2000 ppm for low fO2melts).
File in questo prodotto:
File Dimensione Formato  
EGU2018-3935.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 40.73 kB
Formato Adobe PDF
40.73 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2947733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact