Geometric Semantic Genetic Programming (GSGP) is a recently introduced form of Genetic Programming (GP), rooted in a geometric theory of representations, that searches directly the semantic space of functions/programs, rather than the space of their syntactic representations (e.g., trees) as in traditional GP. Remarkably, the fitness landscape seen by GSGP is always -- for any domain and for any problem -- unimodal with a linear slope by construction. This has two important consequences: (i) it makes the search for the optimum much easier than for traditional GP; (ii) it opens the way to analyse theoretically in a easy manner the optimisation time of GSGP in a general setting. The runtime analysis of GP has been very hard to tackle, and only simplified forms of GP on specific, unrealistic problems have been studied so far. We present a runtime analysis of GSGP with various types of mutations on the class of all Boolean functions.
Runtime analysis of mutation-based geometric semantic genetic programming on boolean functions
Manzoni Luca
2013-01-01
Abstract
Geometric Semantic Genetic Programming (GSGP) is a recently introduced form of Genetic Programming (GP), rooted in a geometric theory of representations, that searches directly the semantic space of functions/programs, rather than the space of their syntactic representations (e.g., trees) as in traditional GP. Remarkably, the fitness landscape seen by GSGP is always -- for any domain and for any problem -- unimodal with a linear slope by construction. This has two important consequences: (i) it makes the search for the optimum much easier than for traditional GP; (ii) it opens the way to analyse theoretically in a easy manner the optimisation time of GSGP in a general setting. The runtime analysis of GP has been very hard to tackle, and only simplified forms of GP on specific, unrealistic problems have been studied so far. We present a runtime analysis of GSGP with various types of mutations on the class of all Boolean functions.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.