Geometric Semantic Genetic Programming (GSGP) is a recently defined form of Genetic Programming (GP) that has shown promising results on single output Boolean problems when compared with standard tree-based GP. In this paper we compare GSGP with Cartesian GP (CGP) on comprehensive set of Boolean benchmarks, consisting of both single and multiple outputs Boolean problems. The results obtained show that GSGP outperforms also CGP, confirming the efficacy of GSGP in solving Boolean problems.

A comparison between Geometric Semantic GP and Cartesian GP for Boolean functions learning?

Manzoni Luca
2014-01-01

Abstract

Geometric Semantic Genetic Programming (GSGP) is a recently defined form of Genetic Programming (GP) that has shown promising results on single output Boolean problems when compared with standard tree-based GP. In this paper we compare GSGP with Cartesian GP (CGP) on comprehensive set of Boolean benchmarks, consisting of both single and multiple outputs Boolean problems. The results obtained show that GSGP outperforms also CGP, confirming the efficacy of GSGP in solving Boolean problems.
2014
9781450328814
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2947960
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact