Type I Diabetes (T1D) is a chronic disease in which the body’s ability to synthesize insulin is destroyed. It can be difficult for patients to manage their T1D, as they must control a variety of behavioral factors that affect glycemic control outcomes. In this paper, we explore T1D patient behaviors using a Signal Temporal Logic (STL) based learning approach. STL formulas learned from real patient data characterize behavior patterns that may result in varying glycemic control. Such logical characterizations can provide feedback to clinicians and their patients about behavioral changes that patients may implement to improve T1D control. We present both individual- and population-level behavior patterns learned from a clinical dataset of 21 T1D patients.

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors

Silvetti S.;Nenzi L.;
2019-01-01

Abstract

Type I Diabetes (T1D) is a chronic disease in which the body’s ability to synthesize insulin is destroyed. It can be difficult for patients to manage their T1D, as they must control a variety of behavioral factors that affect glycemic control outcomes. In this paper, we explore T1D patient behaviors using a Signal Temporal Logic (STL) based learning approach. STL formulas learned from real patient data characterize behavior patterns that may result in varying glycemic control. Such logical characterizations can provide feedback to clinicians and their patients about behavioral changes that patients may implement to improve T1D control. We present both individual- and population-level behavior patterns learned from a clinical dataset of 21 T1D patients.
2019
978-3-030-31303-6
978-3-030-31304-3
File in questo prodotto:
File Dimensione Formato  
cover,toc. cap.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2955041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact