The Iterative and Participative Axiomatic Design Process (IPADeP) deals with the early conceptual design stage of complex mechanical assemblies. It provides a systematic approach based on the theory of Axiomatic Product Development Lifecycle and aims to minimize the risks related to the uncertainty and incompleteness of the requirements, considering that the requirements will be refined and completed during the process. IPADeP has an iterative nature and is focused on the experience of the people involved in the design process. The functional requirements and the design parameters are conceived through brainstorming sessions and the concept selection is performed involving several experts through a Multi Criteria Decision Making technique. IPADeP has been adopted as methodology to address the early conceptual design stage of a subsystem of the DEMOnstration fusion power plant: the divertor cassette-to-vacuum vessel locking system. A first iteration was performed, resulting in the selection of a “high level” rough solution. According with IPADeP this paper presents an improvement of this solution, performing a new iteration of the process, since the system is ripe to proceed with the decomposition and zigzagging to the second level and new requirements are coming in from the development of the interfaced systems.

Design Progress of the DEMO Divertor Locking System According to IPADeP Methodology

MARZULLO, DOMENICO
;
2015-01-01

Abstract

The Iterative and Participative Axiomatic Design Process (IPADeP) deals with the early conceptual design stage of complex mechanical assemblies. It provides a systematic approach based on the theory of Axiomatic Product Development Lifecycle and aims to minimize the risks related to the uncertainty and incompleteness of the requirements, considering that the requirements will be refined and completed during the process. IPADeP has an iterative nature and is focused on the experience of the people involved in the design process. The functional requirements and the design parameters are conceived through brainstorming sessions and the concept selection is performed involving several experts through a Multi Criteria Decision Making technique. IPADeP has been adopted as methodology to address the early conceptual design stage of a subsystem of the DEMOnstration fusion power plant: the divertor cassette-to-vacuum vessel locking system. A first iteration was performed, resulting in the selection of a “high level” rough solution. According with IPADeP this paper presents an improvement of this solution, performing a new iteration of the process, since the system is ripe to proceed with the decomposition and zigzagging to the second level and new requirements are coming in from the development of the interfaced systems.
2015
http://www.sciencedirect.com/science/journal/22128271
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S221282711500774X-main.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2962117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact