We propose a tool for exploring the number of clusters based on pivotal methods and consensus clustering. K-means algorithm is used to learn the pairwise similarity via the co-occurrence of points in multiple partitions of the data. This similarity can be used to investigate the number of groups and detect arbitrary shaped clusters. Different criteria for identifying the pivots are discussed, as well as preliminary results concerning the selection of the optimal number of clusters.

Assessing the number of groups in consensus clustering by pivotal methods

Roberta Pappada;Francesco Pauli;Nicola Torelli
2021-01-01

Abstract

We propose a tool for exploring the number of clusters based on pivotal methods and consensus clustering. K-means algorithm is used to learn the pairwise similarity via the co-occurrence of points in multiple partitions of the data. This similarity can be used to investigate the number of groups and detect arbitrary shaped clusters. Different criteria for identifying the pivots are discussed, as well as preliminary results concerning the selection of the optimal number of clusters.
9788891927361
https://it.pearson.com/content/dam/region-core/italy/pearson-italy/pdf/Docenti/Università/pearson-sis-book-2021-parte-1.pdf
File in questo prodotto:
File Dimensione Formato  
Pappada_Assessing the number of groups in consensus clustering by pivotal methods.pdf

Accesso chiuso

Descrizione: contributo con frontespizio e indice del volume
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 405.39 kB
Formato Adobe PDF
405.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2994379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact