In this work we introduce a new dissimilarity measure based on the AliMikhail-Haq copula, motivated by the empirical issue of detecting low correlations and discriminating variables with very similar rank correlation. This issue arises from the analysis of panel data concerning the district heating demand of the Italian city Bozen-Bolzano. In the hierarchical clustering framework, we empirically investigate the features of the proposed measure and compare it with a classical dissimilarity measure based on Kendall’s rank correlation.

Ali-Mikhail-Haq copula to detect low correlations in hierarchical clustering

Roberta Pappadà
2021-01-01

Abstract

In this work we introduce a new dissimilarity measure based on the AliMikhail-Haq copula, motivated by the empirical issue of detecting low correlations and discriminating variables with very similar rank correlation. This issue arises from the analysis of panel data concerning the district heating demand of the Italian city Bozen-Bolzano. In the hierarchical clustering framework, we empirically investigate the features of the proposed measure and compare it with a classical dissimilarity measure based on Kendall’s rank correlation.
File in questo prodotto:
File Dimensione Formato  
Pappada_Ali-Mikhail-Haq copula to detect low correlations in hierarchical.pdf

accesso aperto

Descrizione: contributo con frontespizio e indice del volume
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 957.37 kB
Formato Adobe PDF
957.37 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2994383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact