Many probabilistic inference problems such as stochastic filtering or the computation of rare event probabilities require model analysis under initial and terminal constraints. We propose a solution to this bridging problem for the widely used class of population-structured Markov jump processes. The method is based on a state-space lumping scheme that aggregates states in a grid structure. The resulting approximate bridging distribution is used to iteratively refine relevant and truncate irrelevant parts of the state-space. This way, the algorithm learns a well-justified finite-state projection yielding guaranteed lower bounds for the system behavior under endpoint constraints. We demonstrate the method’s applicability to a wide range of problems such as Bayesian inference and the analysis of rare events.
Analysis of Markov Jump Processes under Terminal Constraints
Bortolussi, Luca;
2021-01-01
Abstract
Many probabilistic inference problems such as stochastic filtering or the computation of rare event probabilities require model analysis under initial and terminal constraints. We propose a solution to this bridging problem for the widely used class of population-structured Markov jump processes. The method is based on a state-space lumping scheme that aggregates states in a grid structure. The resulting approximate bridging distribution is used to iteratively refine relevant and truncate irrelevant parts of the state-space. This way, the algorithm learns a well-justified finite-state projection yielding guaranteed lower bounds for the system behavior under endpoint constraints. We demonstrate the method’s applicability to a wide range of problems such as Bayesian inference and the analysis of rare events.File | Dimensione | Formato | |
---|---|---|---|
Backenköhler2021_Chapter_AnalysisOfMarkovJumpProcessesU.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
977.59 kB
Formato
Adobe PDF
|
977.59 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.