Proton-rich nuclei, the so-called p-nuclei, are made in photodisintegration processes in outer shells of massive stars in the course of the final supernova explosion. Nuclear uncertainties in the production of these nuclei have been quantified in a Monte Carlo procedure. Bespoke temperature-dependent uncertainties were assigned to different types of reactions involving nuclei from Fe to Bi and all rates were varied randomly within the uncertainties. The resulting total production uncertainties of the p-nuclei are below a factor of two, with few exceptions. Key reactions dominating the final uncertainties have been identified in an automated procedure using correlations between rate and abundance uncertainties. Our results are compared to those of a previous study manually varying reaction rates.
Production Uncertainties of p-Nuclei in the γ-Process in Massive Stars Using a Monte Carlo Approach
Cescutti G;
2017-01-01
Abstract
Proton-rich nuclei, the so-called p-nuclei, are made in photodisintegration processes in outer shells of massive stars in the course of the final supernova explosion. Nuclear uncertainties in the production of these nuclei have been quantified in a Monte Carlo procedure. Bespoke temperature-dependent uncertainties were assigned to different types of reactions involving nuclei from Fe to Bi and all rates were varied randomly within the uncertainties. The resulting total production uncertainties of the p-nuclei are below a factor of two, with few exceptions. Key reactions dominating the final uncertainties have been identified in an automated procedure using correlations between rate and abundance uncertainties. Our results are compared to those of a previous study manually varying reaction rates.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.