Photon-counting CT (PCCT) is an emerging CT technology that uses photon-counting detectors (PCDs) to offer better spatial resolution, higher contrast, lower noise, and material-specific imaging as compared to conventional energy-integrating CT. To study the efficiency and performance of PCCT technologies in clinical use, virtual imaging trials (VITs) can be used. VITs use computational human phantoms to generate scanner-specific CT images. The integration of PCCT into VITs requires modeling the signal generation and signal processing in the detector and electronics, which includes incorporating the effects of nonidealities in PCDs such as crosstalk, charge sharing, and pulse pileup. These non-idealities adversely affect the image quality of PCCT systems, and their inclusion is important in accurate and realistic modeling of the PCDs. The existing scanner simulators model either charge sharing or pulse pileup but not their combined effects. The purpose of this study was to develop an experimentally validated modular detector response model that accounted for the combined effects of crosstalk, charge sharing, and pulse pileup in CdTe- and Si-based PCDs. It can be used to simulate variety of PCCT designs, including different detector materials and geometry, facilitating the evaluation and study of present and future PCCTs. The validation showed a close agreement with the experimental data acquired using Pixirad-1/Pixie-III PCDs. The platform was used to generate spatio-energetic covariance correlation matrices that integrated with a VIT framework called DukeSim to simulate scanner specific PCCT images.
Simulation of the combined effects of charge sharing and pulse pileup in photon-counting CT
Longo, Renata;
2022-01-01
Abstract
Photon-counting CT (PCCT) is an emerging CT technology that uses photon-counting detectors (PCDs) to offer better spatial resolution, higher contrast, lower noise, and material-specific imaging as compared to conventional energy-integrating CT. To study the efficiency and performance of PCCT technologies in clinical use, virtual imaging trials (VITs) can be used. VITs use computational human phantoms to generate scanner-specific CT images. The integration of PCCT into VITs requires modeling the signal generation and signal processing in the detector and electronics, which includes incorporating the effects of nonidealities in PCDs such as crosstalk, charge sharing, and pulse pileup. These non-idealities adversely affect the image quality of PCCT systems, and their inclusion is important in accurate and realistic modeling of the PCDs. The existing scanner simulators model either charge sharing or pulse pileup but not their combined effects. The purpose of this study was to develop an experimentally validated modular detector response model that accounted for the combined effects of crosstalk, charge sharing, and pulse pileup in CdTe- and Si-based PCDs. It can be used to simulate variety of PCCT designs, including different detector materials and geometry, facilitating the evaluation and study of present and future PCCTs. The validation showed a close agreement with the experimental data acquired using Pixirad-1/Pixie-III PCDs. The platform was used to generate spatio-energetic covariance correlation matrices that integrated with a VIT framework called DukeSim to simulate scanner specific PCCT images.File | Dimensione | Formato | |
---|---|---|---|
Bhattarai22_SPIE.pdf
Accesso chiuso
Descrizione: SPIE proceeding
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
502.66 kB
Formato
Adobe PDF
|
502.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.