Encryption at the application layer is often promoted to protect privacy, i.e., to prevent someone in the network from observing users’ communications. In this work we explore how to build a profile for a target user by observing only the names of the services contacted during browsing, names that are still not encrypted and easily accessible from passive probes. Would it be possible to uniquely identify a target user from a large population that accesses the same network? Aiming at verifying if and how this is possible, we propose and compare three methodologies to compute similarities between users’ profiles. We use real data collected in networks, evaluate and discuss performance and the impact of quality of data being used. To this end, we propose a machine learning methodology to extract the services intentionally requested by users, which turn out to be important for the profiling purpose. Results show that the classification problem can be solved with good accuracy (up to 94%), provided some ingenuity is used to build the model.

Users’ Fingerprinting Techniques from TCP Traffic

TREVISAN, MARTINO;
2017-01-01

Abstract

Encryption at the application layer is often promoted to protect privacy, i.e., to prevent someone in the network from observing users’ communications. In this work we explore how to build a profile for a target user by observing only the names of the services contacted during browsing, names that are still not encrypted and easily accessible from passive probes. Would it be possible to uniquely identify a target user from a large population that accesses the same network? Aiming at verifying if and how this is possible, we propose and compare three methodologies to compute similarities between users’ profiles. We use real data collected in networks, evaluate and discuss performance and the impact of quality of data being used. To this end, we propose a machine learning methodology to extract the services intentionally requested by users, which turn out to be important for the profiling purpose. Results show that the classification problem can be solved with good accuracy (up to 94%), provided some ingenuity is used to build the model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3023991
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact