This is the first package allowing for the estimation, visualization and prediction of the most well-known football models: double Poisson, bivariate Poisson, Skellam, student_t. The package allows Hamiltonian Monte Carlo (HMC) estimation through the underlying Stan environment and Maximum Likelihood estimation (MLE, for 'static' models only). The model construction relies on the most well-known football references, such as Dixon and Coles (1997) , Karlis and Ntzoufras (2003) and Egidi, Pauli and Torelli (2018) . Copyright: GPL-2

footBayes: Fitting Bayesian and MLE Football Models

Leonardo Egidi
2022-01-01

Abstract

This is the first package allowing for the estimation, visualization and prediction of the most well-known football models: double Poisson, bivariate Poisson, Skellam, student_t. The package allows Hamiltonian Monte Carlo (HMC) estimation through the underlying Stan environment and Maximum Likelihood estimation (MLE, for 'static' models only). The model construction relies on the most well-known football references, such as Dixon and Coles (1997) , Karlis and Ntzoufras (2003) and Egidi, Pauli and Torelli (2018) . Copyright: GPL-2
2022
File in questo prodotto:
File Dimensione Formato  
footBayes.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 184.08 kB
Formato Adobe PDF
184.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3026125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact