Outcome prediction in wake-up ischemic stroke (WUS) is important for guiding treatment strategies, in order to improve recovery and minimize disability. We aimed at producing an interpretable model to predict a good outcome (NIHSS 7-day<5) in thrombolysis treated WUS patients by using Classification and Regression Tree (CART) method. The study encompassed 104 WUS patients and we used a dataset consisting of demographic, clinical and neuroimaging features. The model was produced by CART with Gini split criterion and evaluated by using 5-fold cross-validation. The produced decision tree model was based on NIHSS at admission, ischemic core volume and age features. The predictive accuracy of model was 86.5% and the AUC-ROC was 0.88. In conclusion, in this preliminary study we identified interpretable model based on clinical and neuroimaging features to predict clinical outcome in thrombolysis treated wake-up stroke patients.
Wake-up Stroke Outcome Prediction by Interpretable Decision Tree Model
Ajcevic M.
;Miladinovic A.;Buoite Stella A.;Naccarato M.;Caruso P.;Manganotti P.;Accardo A.
2022-01-01
Abstract
Outcome prediction in wake-up ischemic stroke (WUS) is important for guiding treatment strategies, in order to improve recovery and minimize disability. We aimed at producing an interpretable model to predict a good outcome (NIHSS 7-day<5) in thrombolysis treated WUS patients by using Classification and Regression Tree (CART) method. The study encompassed 104 WUS patients and we used a dataset consisting of demographic, clinical and neuroimaging features. The model was produced by CART with Gini split criterion and evaluated by using 5-fold cross-validation. The produced decision tree model was based on NIHSS at admission, ischemic core volume and age features. The predictive accuracy of model was 86.5% and the AUC-ROC was 0.88. In conclusion, in this preliminary study we identified interpretable model based on clinical and neuroimaging features to predict clinical outcome in thrombolysis treated wake-up stroke patients.File | Dimensione | Formato | |
---|---|---|---|
SHTI-294-SHTI220527.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
170.02 kB
Formato
Adobe PDF
|
170.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.