The problem of timeline-based planning (TP) over dense temporal domains is known to be undecidable. In this paper, we introduce two semantic variants of TP, called strong minimal and weak minimal semantics, which allow to express meaningful properties. Both semantics are based on the minimality in the time distances of the existentially-quantified time events from the universally-quantified reference event, but the weak minimal variant distinguishes minimality in the past from minimality in the future. Surprisingly, we show that, despite the (apparently) small difference in the two semantics, for the strong minimal one, the TP problem is still undecidable, while for the weak minimal one, the TP problem is just PSPACE-complete. Membership in PSPACE is determined by exploiting a strictly more expressive extension (ECA+) of the well-known robust class of Event-Clock Automata (ECA) that allows to encode the weak minimal TP problem and to reduce it to non-emptiness of Timed Automata (TA). Finally, an extension of ECA+(ECA++) is considered, proving that its non-emptiness problem is undecidable. We believe that the two extensions of ECA (ECA+ and ECA++), introduced for technical reasons, are actually valuable per sé in the field of TA.

Taming the complexity of timeline-based planning over dense temporal domains

Peron A.
2019-01-01

Abstract

The problem of timeline-based planning (TP) over dense temporal domains is known to be undecidable. In this paper, we introduce two semantic variants of TP, called strong minimal and weak minimal semantics, which allow to express meaningful properties. Both semantics are based on the minimality in the time distances of the existentially-quantified time events from the universally-quantified reference event, but the weak minimal variant distinguishes minimality in the past from minimality in the future. Surprisingly, we show that, despite the (apparently) small difference in the two semantics, for the strong minimal one, the TP problem is still undecidable, while for the weak minimal one, the TP problem is just PSPACE-complete. Membership in PSPACE is determined by exploiting a strictly more expressive extension (ECA+) of the well-known robust class of Event-Clock Automata (ECA) that allows to encode the weak minimal TP problem and to reduce it to non-emptiness of Timed Automata (TA). Finally, an extension of ECA+(ECA++) is considered, proving that its non-emptiness problem is undecidable. We believe that the two extensions of ECA (ECA+ and ECA++), introduced for technical reasons, are actually valuable per sé in the field of TA.
File in questo prodotto:
File Dimensione Formato  
LIPIcs-FSTTCS-2019-34.pdf

accesso aperto

Licenza: Creative commons
Dimensione 574.78 kB
Formato Adobe PDF
574.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3032339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact