In this paper, we establish Pspace-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality 〈E〉, for the “suffix” relation on pairs of intervals, and modality 〈D〉, for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the Expspace upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes (〈E〉) or, symmetrically, the modality for prefixes (〈B〉) to the logic of sub-intervals (featuring only 〈D〉).

Pspace-completeness of the temporal logic of sub-intervals and suffixes

Peron A.;
2021-01-01

Abstract

In this paper, we establish Pspace-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality 〈E〉, for the “suffix” relation on pairs of intervals, and modality 〈D〉, for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the Expspace upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes (〈E〉) or, symmetrically, the modality for prefixes (〈B〉) to the logic of sub-intervals (featuring only 〈D〉).
File in questo prodotto:
File Dimensione Formato  
LIPIcs-TIME-2021-9.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 797.68 kB
Formato Adobe PDF
797.68 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3032617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact