The Silicon Vertex Detector (SVD) consists of four layers of double-sided silicon strip sensors. The SVD is one of the two vertex subdetectors within Belle II. Since the start of data taking in 2019 at the Super-KEKB collider (KEK, Japan), which has the highest peak-luminosity ever recorded, the SVD is operated reliably and with high efficiency, despite exposure to harsh beam background. Measurements using data show that the SVD has both high signal-to-noise ratio and hit efficiency, as well precise spatial resolution. Further these properties are stable over time. Recently the simulation has been tuned, using data, to improve the agrement between data and MC for cluster properties. The good hit-time resolution can be exploited to further improve the robustness against the higher levels of background expected as the instantaneous luminosity increases in the next years of running. First effects of radiation damage on strip noise, sensor currents and depletion voltage have been measured, although they do not have any detrimental effect on the performance of the detector.

New Results from the Silicon Vertex Detector of the Belle II Experiment

Gabrielli A.;Ganiev E.;La Licata C.;Vitale L.;
2021-01-01

Abstract

The Silicon Vertex Detector (SVD) consists of four layers of double-sided silicon strip sensors. The SVD is one of the two vertex subdetectors within Belle II. Since the start of data taking in 2019 at the Super-KEKB collider (KEK, Japan), which has the highest peak-luminosity ever recorded, the SVD is operated reliably and with high efficiency, despite exposure to harsh beam background. Measurements using data show that the SVD has both high signal-to-noise ratio and hit efficiency, as well precise spatial resolution. Further these properties are stable over time. Recently the simulation has been tuned, using data, to improve the agrement between data and MC for cluster properties. The good hit-time resolution can be exploited to further improve the robustness against the higher levels of background expected as the instantaneous luminosity increases in the next years of running. First effects of radiation damage on strip noise, sensor currents and depletion voltage have been measured, although they do not have any detrimental effect on the performance of the detector.
File in questo prodotto:
File Dimensione Formato  
CoronaPOS2021.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3038838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact