This paper introduces NLCMap, a framework for the mapping space exploration targeting Non-Linear Convolutional Networks (NLCNs). NLCNs [1] are a novel neural network model that improves performances in certain computer vision applications by introducing a non-linearity in the weights computation. NLCNs are more challenging to efficiently map onto hardware accelerators if compared to traditional Convolutional Neural Networks (CNNs), due to data dependencies and additional computations. To this aim, we propose NLCMap, a framework that, given an NLC layer and a generic hardware accelerator with a certain on-chip memory budget, finds the optimal mapping that minimizes the accesses to the off-chip memory, which are often the critical aspect in CNNs acceleration.

NLCMAP: A FRAMEWORK FOR THE EFFICIENT MAPPING OF NON-LINEAR CONVOLUTIONAL NEURAL NETWORKS ON FPGA ACCELERATORS

Marsi S.
Conceptualization
2022-01-01

Abstract

This paper introduces NLCMap, a framework for the mapping space exploration targeting Non-Linear Convolutional Networks (NLCNs). NLCNs [1] are a novel neural network model that improves performances in certain computer vision applications by introducing a non-linearity in the weights computation. NLCNs are more challenging to efficiently map onto hardware accelerators if compared to traditional Convolutional Neural Networks (CNNs), due to data dependencies and additional computations. To this aim, we propose NLCMap, a framework that, given an NLC layer and a generic hardware accelerator with a certain on-chip memory budget, finds the optimal mapping that minimizes the accesses to the off-chip memory, which are often the critical aspect in CNNs acceleration.
File in questo prodotto:
File Dimensione Formato  
NLCMAP_A_Framework_for_the_Efficient_Mapping_of_Non-Linear_Convolutional_Neural_Networks_on_FPGA_Accelerators.pdf

Accesso chiuso

Descrizione: Paper finale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
NLCMAP_A_Framework_for_the_Efficient_Mapping_of_Non-Linear_Convolutional_Neural_Networks_on_FPGA_Accelerators-Post_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3045938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact