We introduce a clustering method for time series based on tail dependence. Such a method considers spatial constraints by means of a suitable dissimilarity index that merges temporal and spatial dependence via extreme-value copulas. The proposed approach is applied to the study of rainfall extremes.
An approach to cluster time series extremes with spatial constraints
Roberta Pappada'
2023-01-01
Abstract
We introduce a clustering method for time series based on tail dependence. Such a method considers spatial constraints by means of a suitable dissimilarity index that merges temporal and spatial dependence via extreme-value copulas. The proposed approach is applied to the study of rainfall extremes.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SEAS_IN23.pdf
Accesso chiuso
Descrizione: contributo
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
285.06 kB
Formato
Adobe PDF
|
285.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.