We introduce a clustering method for time series based on tail dependence. Such a method considers spatial constraints by means of a suitable dissimilarity index that merges temporal and spatial dependence via extreme-value copulas. The proposed approach is applied to the study of rainfall extremes.

An approach to cluster time series extremes with spatial constraints

Roberta Pappada'
2023-01-01

Abstract

We introduce a clustering method for time series based on tail dependence. Such a method considers spatial constraints by means of a suitable dissimilarity index that merges temporal and spatial dependence via extreme-value copulas. The proposed approach is applied to the study of rainfall extremes.
File in questo prodotto:
File Dimensione Formato  
SEAS_IN23.pdf

Accesso chiuso

Descrizione: contributo
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 285.06 kB
Formato Adobe PDF
285.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3046418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact