In high precision scattering experiments particle tracks must often be reconstructed from a series of hits in successive detector planes. The relative distance between these planes is a critical parameter that must be monitored during operation. To address this problem we have developed a digital holographic interferometer dubbed Holographic Alignment Monitor (HAM) to be used in the MUonE project at CERN. MUonE aims at a precision measurement of the scattering angle between particles after an elastic muon-electron scattering. The HAM is designed to monitor the relative distance between position-sensitive sensor planes inside a MUonE tracking station with a resolution better than the required 10 m. The system uses a 532 nm fiber-coupled laser source both to illuminate a portion of the detector plane (object), and to provide the reference beam. A CMOS image sensor acquires the raw data, and the reconstructed holographic image of the silicon sensor being observed is computed using an algorithm containing a Fourier transform. The relative distance between silicon planes is monitored by superposing successive raw images of the same object on an initial reference one and observing the interference fringes appearing on the reconstructed holographic image. Preliminary tests have yielded a distance resolution of less than 1 m.
Digital holographic interferometry for particle detector diagnostic
Cantatore G.
;
2022-01-01
Abstract
In high precision scattering experiments particle tracks must often be reconstructed from a series of hits in successive detector planes. The relative distance between these planes is a critical parameter that must be monitored during operation. To address this problem we have developed a digital holographic interferometer dubbed Holographic Alignment Monitor (HAM) to be used in the MUonE project at CERN. MUonE aims at a precision measurement of the scattering angle between particles after an elastic muon-electron scattering. The HAM is designed to monitor the relative distance between position-sensitive sensor planes inside a MUonE tracking station with a resolution better than the required 10 m. The system uses a 532 nm fiber-coupled laser source both to illuminate a portion of the detector plane (object), and to provide the reference beam. A CMOS image sensor acquires the raw data, and the reconstructed holographic image of the silicon sensor being observed is computed using an algorithm containing a Fourier transform. The relative distance between silicon planes is monitored by superposing successive raw images of the same object on an initial reference one and observing the interference fringes appearing on the reconstructed holographic image. Preliminary tests have yielded a distance resolution of less than 1 m.File | Dimensione | Formato | |
---|---|---|---|
Digital_holographic_interferometry_for_particle_detector_diagnostic.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
5.05 MB
Formato
Adobe PDF
|
5.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Digital_holographic_interferometry_for_particle_detector_diagnostic-Post_print.pdf
accesso aperto
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
5.14 MB
Formato
Adobe PDF
|
5.14 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.