Gradient boosting algorithms are attractive for effect selection in multi-parameter generalized additive models. Due to the high-dimensionality of the problem, a parsimonious covariance matrix model is required for modelling multivariate Gaussian data. Here, we address covariance matrix model specification using gradient boosting. In particular, the aim is ranking the effects used to model the elements of the modified Cholesky decomposition of the precision matrix. The performance of the proposal is illustrated on electricity demand data.

Gradient boosting for parsimonious additive covariance matrix modelling

Vincenzo Gioia
;
2023-01-01

Abstract

Gradient boosting algorithms are attractive for effect selection in multi-parameter generalized additive models. Due to the high-dimensionality of the problem, a parsimonious covariance matrix model is required for modelling multivariate Gaussian data. Here, we address covariance matrix model specification using gradient boosting. In particular, the aim is ranking the effects used to model the elements of the modified Cholesky decomposition of the precision matrix. The performance of the proposal is illustrated on electricity demand data.
File in questo prodotto:
File Dimensione Formato  
IWSM_2023_Conference_Proceedings_GioiaV.pdf

Accesso chiuso

Descrizione: Proceeding IWSM 2023
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3058678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact