Gradient boosting algorithms are attractive for effect selection in multi-parameter generalized additive models. Due to the high-dimensionality of the problem, a parsimonious covariance matrix model is required for modelling multivariate Gaussian data. Here, we address covariance matrix model specification using gradient boosting. In particular, the aim is ranking the effects used to model the elements of the modified Cholesky decomposition of the precision matrix. The performance of the proposal is illustrated on electricity demand data.
Gradient boosting for parsimonious additive covariance matrix modelling
Vincenzo Gioia
;
2023-01-01
Abstract
Gradient boosting algorithms are attractive for effect selection in multi-parameter generalized additive models. Due to the high-dimensionality of the problem, a parsimonious covariance matrix model is required for modelling multivariate Gaussian data. Here, we address covariance matrix model specification using gradient boosting. In particular, the aim is ranking the effects used to model the elements of the modified Cholesky decomposition of the precision matrix. The performance of the proposal is illustrated on electricity demand data.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IWSM_2023_Conference_Proceedings_GioiaV.pdf
Accesso chiuso
Descrizione: Proceeding IWSM 2023
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.