The Cretaceous-Paleogene (K-Pg) mass extinction was a pivotal event in Earth's history and is attributed to the interplay of two major events—the Deccan Traps volcanism and the Chicxulub asteroid impact. We contribute to refine of our understanding of the volcanic stressor for this extinction by investigating the sulfur and fluorine budgets of Deccan lavas from the Western Ghats (India), spanning the K-Pg boundary. Sulfur and fluorine concentrations were analyzed in clinopyroxene phenocrysts from Deccan Traps lavas, by Synchrotron-light X-ray fluorescence (beamline I18, Diamond Light Source, U.K.), and ion probe (CAMECA IMS 1280 at Nordsim Laboratory, Swedish Museum of Natural History, Stockholm, SE), respectively. The results were divided by experimentally determined partition coefficients to calculate melt concentrations. Our analyses reveal variable magmatic volcanic fluorine concentrations ranging from 400 to 3000 parts per million, suggesting the potential for regional environmental impact. The highest sulfur concentrations, reaching up to 1800 parts per million, are observed in Deccan lavas emplaced just prior to the extinction interval, within a timeframe of 0.1 million years. In contrast, later basalts generally exhibit lower sulfur concentrations, only up to 750 parts per million. Independent evidence supports that eruption of the Deccan flood basalts occurred in multiple voluminous eruptive pulses each lasting on the order of centuries, as typical of continental flood basalts. Our findings propose that the volcanic sulfur degassing associated with such activity may have led to repeated, short-lived global temperature drops, too short to be recorded by global paleotemperature record, albeit coupled with a global cooling trend. Sulfur-induced cold snaps likely imposed stress on ecosystems long before the decisive impact of the Chicxulub bolide at the end of the Cretaceous.
Sulfur and fluorine degassing from Deccan Traps lavas inferred from pyroxene chemistry: potential for end-Cretaceous volcanic winters
Angelo De Min;
2024-01-01
Abstract
The Cretaceous-Paleogene (K-Pg) mass extinction was a pivotal event in Earth's history and is attributed to the interplay of two major events—the Deccan Traps volcanism and the Chicxulub asteroid impact. We contribute to refine of our understanding of the volcanic stressor for this extinction by investigating the sulfur and fluorine budgets of Deccan lavas from the Western Ghats (India), spanning the K-Pg boundary. Sulfur and fluorine concentrations were analyzed in clinopyroxene phenocrysts from Deccan Traps lavas, by Synchrotron-light X-ray fluorescence (beamline I18, Diamond Light Source, U.K.), and ion probe (CAMECA IMS 1280 at Nordsim Laboratory, Swedish Museum of Natural History, Stockholm, SE), respectively. The results were divided by experimentally determined partition coefficients to calculate melt concentrations. Our analyses reveal variable magmatic volcanic fluorine concentrations ranging from 400 to 3000 parts per million, suggesting the potential for regional environmental impact. The highest sulfur concentrations, reaching up to 1800 parts per million, are observed in Deccan lavas emplaced just prior to the extinction interval, within a timeframe of 0.1 million years. In contrast, later basalts generally exhibit lower sulfur concentrations, only up to 750 parts per million. Independent evidence supports that eruption of the Deccan flood basalts occurred in multiple voluminous eruptive pulses each lasting on the order of centuries, as typical of continental flood basalts. Our findings propose that the volcanic sulfur degassing associated with such activity may have led to repeated, short-lived global temperature drops, too short to be recorded by global paleotemperature record, albeit coupled with a global cooling trend. Sulfur-induced cold snaps likely imposed stress on ecosystems long before the decisive impact of the Chicxulub bolide at the end of the Cretaceous.File | Dimensione | Formato | |
---|---|---|---|
EGU24-21751-print-1.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
289.3 kB
Formato
Adobe PDF
|
289.3 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.