The basins composing the 1000-km wide West Antarctica Rift System (WARS), derived from extensional dynamics lasting from the Cretaceous to the Middle Neogene, bear evidence of a peculiar evolution through time: a transition from a diffuse to a localized thinning style and a migration of the focus of deformation, which likely progressed towards the cratonic domains of West Antarctica. Using the current observations, we aim at identifying which inherited starting conditions [1] result in outcomes compatible with the present-time structures and which do not allow so, unless other factors are accounted for. To this aim, we turn to an extensive grid search in the parameter space, running a large number of forward numerical models to cover the possible permutations of parameters under test. We use the open source Underworld2 code [2] with a simplified scheme of starting conditions and kinematics boundaries, for lithospheric-scale 2-D thermomechanical models. We analyse the results obtained by changing a great number of parameters, including initial geometries of the crust and lithosphere, different rheologies, inherited structures, such as strain-weakening scars and thermal remnants of slabs. We identify that a high crustal thickness (more than 45 km) is required to accommodate the first rifting phase (170 km ca. of cumulated extension, [3]) without producing crustal necking and eventual ocean formation. Parameters that favour a weaker strength profile, chiefly temperature (due to a thicker crust and/or a shallow lithosphere-asthenosphere boundary), are also required to avoid an early transition to localized deformation, in agreement with previous studies [4]. Smaller scale features, such as partition in multiple sub-basins, require additional factors, such as inherited weak-zone seeds (“scars”) in the crust and mantle, which are likely remnants of previous compressive phases [5]. [1] Perron, P., Le Pourhiet, L., Guiraud, M., Vennin, E., Moretti, I., Portier, É., & Konaté, M. (2021). Control of inherited accreted lithospheric heterogeneity on the architecture and the low, long-term subsidence rate of intracratonic basins. BSGF - Earth Sciences Bulletin, 192. https://doi.org/10.1051/bsgf/2020038 [2] Mansour, J., Giordani, J., Moresi, L., Beucher, R., Kaluza, O., Velic, M., Farrington, R., Quenette, S., & Beall, A. (2020). Underworld2: Python Geodynamics Modelling for Desktop, HPC and Cloud. Journal of Open Source Software, 5(47), 1797. https://doi.org/10.21105/joss.01797 [3] Brancolini, G., Busetti, M., Coren, F., De Cillia, C., Marchetti, M., De Santis, L., Zanolla, C., Cooper, A.K., Cochrane, G.R., Zayatz, I., Belyaev, V., Knyazev, M., Vinnikovskaya, O., Davey, F.J., Hinz, K., 1995. ANTOSTRAT Project, seismic stratigraphic atlas of the Ross Sea, Antarctica. In: Cooper, A.K., Barker, P.F., Brancolini, G., (Eds.), Geology and Seismic Stratigraphy of the Antarctic Margin. Antarctic Research Series, vol. 68, https://doi.org/10.1029/AR068 [4] Huerta, A. D., & Harry, D. L. (2007). The transition from diffuse to focused extension: Modeled evolution of the West Antarctic Rift system. Earth and Planetary Science Letters, 255(1–2), 133–147. https://doi.org/10.1016/j.epsl.2006.12.011 [5] Talarico, F., Ghezzo, C., & Kleinschmidt, G. (2022). The Antarctic Continent in Gondwana: a perspective from the Ross Embayment and Potential Research Targets for Future Investigations. In Antarctic Climate Evolution (pp. 219–296). Elsevier. https://doi.org/10.1016/B978-0-12-819109-5.00004-9

The Ross Sea formation: enquiring the sensitivity of basin architecture to prior conditions, with numerical models and a parameter search

Pastorutti, Alberto
;
Tesauro, Magdala;Braitenberg, Carla;De Santis, Laura
2024-01-01

Abstract

The basins composing the 1000-km wide West Antarctica Rift System (WARS), derived from extensional dynamics lasting from the Cretaceous to the Middle Neogene, bear evidence of a peculiar evolution through time: a transition from a diffuse to a localized thinning style and a migration of the focus of deformation, which likely progressed towards the cratonic domains of West Antarctica. Using the current observations, we aim at identifying which inherited starting conditions [1] result in outcomes compatible with the present-time structures and which do not allow so, unless other factors are accounted for. To this aim, we turn to an extensive grid search in the parameter space, running a large number of forward numerical models to cover the possible permutations of parameters under test. We use the open source Underworld2 code [2] with a simplified scheme of starting conditions and kinematics boundaries, for lithospheric-scale 2-D thermomechanical models. We analyse the results obtained by changing a great number of parameters, including initial geometries of the crust and lithosphere, different rheologies, inherited structures, such as strain-weakening scars and thermal remnants of slabs. We identify that a high crustal thickness (more than 45 km) is required to accommodate the first rifting phase (170 km ca. of cumulated extension, [3]) without producing crustal necking and eventual ocean formation. Parameters that favour a weaker strength profile, chiefly temperature (due to a thicker crust and/or a shallow lithosphere-asthenosphere boundary), are also required to avoid an early transition to localized deformation, in agreement with previous studies [4]. Smaller scale features, such as partition in multiple sub-basins, require additional factors, such as inherited weak-zone seeds (“scars”) in the crust and mantle, which are likely remnants of previous compressive phases [5]. [1] Perron, P., Le Pourhiet, L., Guiraud, M., Vennin, E., Moretti, I., Portier, É., & Konaté, M. (2021). Control of inherited accreted lithospheric heterogeneity on the architecture and the low, long-term subsidence rate of intracratonic basins. BSGF - Earth Sciences Bulletin, 192. https://doi.org/10.1051/bsgf/2020038 [2] Mansour, J., Giordani, J., Moresi, L., Beucher, R., Kaluza, O., Velic, M., Farrington, R., Quenette, S., & Beall, A. (2020). Underworld2: Python Geodynamics Modelling for Desktop, HPC and Cloud. Journal of Open Source Software, 5(47), 1797. https://doi.org/10.21105/joss.01797 [3] Brancolini, G., Busetti, M., Coren, F., De Cillia, C., Marchetti, M., De Santis, L., Zanolla, C., Cooper, A.K., Cochrane, G.R., Zayatz, I., Belyaev, V., Knyazev, M., Vinnikovskaya, O., Davey, F.J., Hinz, K., 1995. ANTOSTRAT Project, seismic stratigraphic atlas of the Ross Sea, Antarctica. In: Cooper, A.K., Barker, P.F., Brancolini, G., (Eds.), Geology and Seismic Stratigraphy of the Antarctic Margin. Antarctic Research Series, vol. 68, https://doi.org/10.1029/AR068 [4] Huerta, A. D., & Harry, D. L. (2007). The transition from diffuse to focused extension: Modeled evolution of the West Antarctic Rift system. Earth and Planetary Science Letters, 255(1–2), 133–147. https://doi.org/10.1016/j.epsl.2006.12.011 [5] Talarico, F., Ghezzo, C., & Kleinschmidt, G. (2022). The Antarctic Continent in Gondwana: a perspective from the Ross Embayment and Potential Research Targets for Future Investigations. In Antarctic Climate Evolution (pp. 219–296). Elsevier. https://doi.org/10.1016/B978-0-12-819109-5.00004-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3073721
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact