The usage of eXplainable Artificial Intelligence (XAI) methods has become essential in practical applications, given the increasing deployment of Artificial Intelligence (AI) models and the legislative requirements put forward in the latest years. A fundamental but often underestimated aspect of the explanations is their robustness, a key property that should be satisfied in order to trust the explanations. In this study, we provide some preliminary insights on evaluating the reliability of explanations in the specific case of unbalanced datasets, which are very frequent in high-risk use-cases, but at the same time considerably challenging for both AI models and XAI methods. We propose a simple evaluation focused on the minority class (i.e. the less frequent one) that leverages on-manifold generation of neighbours, explanation aggregation and a metric to test explanation consistency. We present a use-case based on a tabular dataset with numerical features focusing on the occurrence of frost events.

Assessing reliability of explanations in unbalanced datasets: a use-case on the occurrence of frost events

Vascotto I.;Blasone V.;Bortolussi L.
2025-01-01

Abstract

The usage of eXplainable Artificial Intelligence (XAI) methods has become essential in practical applications, given the increasing deployment of Artificial Intelligence (AI) models and the legislative requirements put forward in the latest years. A fundamental but often underestimated aspect of the explanations is their robustness, a key property that should be satisfied in order to trust the explanations. In this study, we provide some preliminary insights on evaluating the reliability of explanations in the specific case of unbalanced datasets, which are very frequent in high-risk use-cases, but at the same time considerably challenging for both AI models and XAI methods. We propose a simple evaluation focused on the minority class (i.e. the less frequent one) that leverages on-manifold generation of neighbours, explanation aggregation and a metric to test explanation consistency. We present a use-case based on a tabular dataset with numerical features focusing on the occurrence of frost events.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3117660
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact