Large-scale analysis of Scanning Electron Microscopy (SEM) images is often limited by unreliable scale information due to proprietary formats and error-prone Optical Character Recognition (OCR). We address this by fine-tuning a Vision Transformer (ViT) to classify the image pixel size - pico, nano, or micro - directly from the pixel data. Fine-tuning on a dataset of 17,700 SEM images, the model achieves 90.6% precision on a held-out test set. Notably, most misclassifications occur at the transitional nano-micro boundary, indicating that the model learns physically meaningful feature representations. Our method provides a robust, automated tool for stratifying SEM archives, enabling new large-scale studies in materials science and nanotechnology.

Automated Pixel-Scale Classification of Scanning Electron Microscopy Images via Vision Transformers

Tommaso Rodani
Co-primo
;
2025-01-01

Abstract

Large-scale analysis of Scanning Electron Microscopy (SEM) images is often limited by unreliable scale information due to proprietary formats and error-prone Optical Character Recognition (OCR). We address this by fine-tuning a Vision Transformer (ViT) to classify the image pixel size - pico, nano, or micro - directly from the pixel data. Fine-tuning on a dataset of 17,700 SEM images, the model achieves 90.6% precision on a held-out test set. Notably, most misclassifications occur at the transitional nano-micro boundary, indicating that the model learns physically meaningful feature representations. Our method provides a robust, automated tool for stratifying SEM archives, enabling new large-scale studies in materials science and nanotechnology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3117954
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact