The Proton EDM Experiment (pEDM) is the first direct search for the proton electric dipole moment (EDM) with the aim of being the first experiment to probe the Standard Model (SM) prediction of any particle EDM. Phase-I of pEDM will achieve $10^{-29} e\cdot$cm, improving current indirect limits by four orders of magnitude. This will establish a new standard of precision in nucleon EDM searches and offer a unique sensitivity to better understand the Strong CP problem. The experiment is ideally positioned to explore physics beyond the Standard Model (BSM), with sensitivity to axionic dark matter via the signal of an oscillating proton EDM and across a wide mass range of BSM models from $\mathcal{O}(1\text{GeV})$ to $\mathcal{O}(10^3\text{TeV})$. Utilizing the frozen-spin technique in a highly symmetric storage ring that leverages existing infrastructure at Brookhaven National Laboratory (BNL), pEDM builds upon the technological foundation and experimental expertise of the highly successful Muon $g$$-$$2$ Experiments. With significant R\&D and prototyping already underway, pEDM is preparing a conceptual design report (CDR) to offer a cost-effective, high-impact path to discovering new sources of CP violation and advancing our understanding of fundamental physics. It will play a vital role in complementing the physics goals of the next-generation collider while simultaneously contributing to sustaining particle physics research and training early-career researchers during gaps between major collider operations.

Status of the Proton EDM Experiment (pEDM)

Giovanni Cantatore;
2025-04-23

Abstract

The Proton EDM Experiment (pEDM) is the first direct search for the proton electric dipole moment (EDM) with the aim of being the first experiment to probe the Standard Model (SM) prediction of any particle EDM. Phase-I of pEDM will achieve $10^{-29} e\cdot$cm, improving current indirect limits by four orders of magnitude. This will establish a new standard of precision in nucleon EDM searches and offer a unique sensitivity to better understand the Strong CP problem. The experiment is ideally positioned to explore physics beyond the Standard Model (BSM), with sensitivity to axionic dark matter via the signal of an oscillating proton EDM and across a wide mass range of BSM models from $\mathcal{O}(1\text{GeV})$ to $\mathcal{O}(10^3\text{TeV})$. Utilizing the frozen-spin technique in a highly symmetric storage ring that leverages existing infrastructure at Brookhaven National Laboratory (BNL), pEDM builds upon the technological foundation and experimental expertise of the highly successful Muon $g$$-$$2$ Experiments. With significant R\&D and prototyping already underway, pEDM is preparing a conceptual design report (CDR) to offer a cost-effective, high-impact path to discovering new sources of CP violation and advancing our understanding of fundamental physics. It will play a vital role in complementing the physics goals of the next-generation collider while simultaneously contributing to sustaining particle physics research and training early-career researchers during gaps between major collider operations.
23-apr-2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3120804
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact