The rapid developments in the availability and access to spatially referenced information in a variety of areas, has induced the need for better analysis techniques to understand the various phenomena. In particular, spatial clustering algorithms, which group similar spatial objects into classes, can be used for the identification of areas sharing common characteristics. The aim of this chapter is to present a density based algorithm for the discovery of clusters of units in large spatial data sets (MDBSCAN). This algorithm is a modification of the DBSCAN algorithm (see Ester (1996)). The modifications regard the consideration of spatial and non spatial variables and the use of a Lagrange-Chebychev metrics instead of the usual Euclidean one. The applications concern a synthetic data set and a data set of satellite images.

On the MDBSCAN Algorithm ina Spatial Data Mining Context

SCHOIER, GABRIELLA
2012-01-01

Abstract

The rapid developments in the availability and access to spatially referenced information in a variety of areas, has induced the need for better analysis techniques to understand the various phenomena. In particular, spatial clustering algorithms, which group similar spatial objects into classes, can be used for the identification of areas sharing common characteristics. The aim of this chapter is to present a density based algorithm for the discovery of clusters of units in large spatial data sets (MDBSCAN). This algorithm is a modification of the DBSCAN algorithm (see Ester (1996)). The modifications regard the consideration of spatial and non spatial variables and the use of a Lagrange-Chebychev metrics instead of the usual Euclidean one. The applications concern a synthetic data set and a data set of satellite images.
2012
9781466619265
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2562628
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact