We show that the notion of generalized Lenard chains allows to formulate in a natural way the theory of multi-separable systems in the context of bi-Hamiltonian geometry. We prove that the existence of generalized Lenard chains generated by a Hamiltonian function and by a Nijenhuis tensor defined on a symplectic manifold guarantees the separation of variables. As an application, we construct such a chain for the case I of the classical Smorodinsky-Winternitz model.
Generalized Lenard chains and multi-separability of the Smorodinsky-Winternitz system.
TONDO, GIORGIO SALVATORE
2014-01-01
Abstract
We show that the notion of generalized Lenard chains allows to formulate in a natural way the theory of multi-separable systems in the context of bi-Hamiltonian geometry. We prove that the existence of generalized Lenard chains generated by a Hamiltonian function and by a Nijenhuis tensor defined on a symplectic manifold guarantees the separation of variables. As an application, we construct such a chain for the case I of the classical Smorodinsky-Winternitz model.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.