We show that the notion of generalized Lenard chains allows to formulate in a natural way the theory of multi-separable systems in the context of bi-Hamiltonian geometry. We prove that the existence of generalized Lenard chains generated by a Hamiltonian function and by a Nijenhuis tensor defined on a symplectic manifold guarantees the separation of variables. As an application, we construct such a chain for the case I of the classical Smorodinsky-Winternitz model.
Titolo: | Generalized Lenard chains and multi-separability of the Smorodinsky-Winternitz system. |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Abstract: | We show that the notion of generalized Lenard chains allows to formulate in a natural way the theory of multi-separable systems in the context of bi-Hamiltonian geometry. We prove that the existence of generalized Lenard chains generated by a Hamiltonian function and by a Nijenhuis tensor defined on a symplectic manifold guarantees the separation of variables. As an application, we construct such a chain for the case I of the classical Smorodinsky-Winternitz model. |
Handle: | http://hdl.handle.net/11368/2737499 |
Appare nelle tipologie: | 4.1 Contributo in Atti Convegno (Proceeding) |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.