The present paper is the continuation of the recent work [F. Colombini, D. Del Santo, F. Fanelli and G. Métivier: Time-dependent loss of derivatives for hyperbolic operators with non-regular coefficients, Comm. Partial Differential Equations 38 (2013), 1791-1817], and it is devoted to strictly hyperbolic operators with non-regular coefficients. We focus here on the case of complete operators whose second-order coefficients are log-Zygmund continuous in time, and we investigate the C^\infty well-posedness of the associate Cauchy problem.
Titolo: | A note on complete hyperbolic operators with log-Zygmund coecients | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Serie: | ||
Abstract: | The present paper is the continuation of the recent work [F. Colombini, D. Del Santo, F. Fanelli and G. Métivier: Time-dependent loss of derivatives for hyperbolic operators with non-regular coefficients, Comm. Partial Differential Equations 38 (2013), 1791-1817], and it is devoted to strictly hyperbolic operators with non-regular coefficients. We focus here on the case of complete operators whose second-order coefficients are log-Zygmund continuous in time, and we investigate the C^\infty well-posedness of the associate Cauchy problem. | |
Handle: | http://hdl.handle.net/11368/2748701 | |
ISBN: | 978-3-319-02549-0 | |
Appare nelle tipologie: | 2.1 Contributo in Volume (Capitolo,Saggio) |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.