It has been demonstrated that malicious users can infer sensitive knowledge from online corporate databases and data cubes that do not adopt effective privacy preserving countermeasures. From this breaking evidence, a plethora of Privacy Preserving Data Mining (PPDM) techniques has been proposed during the last years. Each of these techniques focuses on supporting the privacy preservation of a specialized KDD/DM task such as frequent item set mining, clustering etc. Privacy Preserving OLAP (PPOLAP) is a specific PPDM technique dealing with the privacy preservation of data cubes.
Titolo: | Privacy Preserving OLAP Data Cubes | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Abstract: | It has been demonstrated that malicious users can infer sensitive knowledge from online corporate databases and data cubes that do not adopt effective privacy preserving countermeasures. From this breaking evidence, a plethora of Privacy Preserving Data Mining (PPDM) techniques has been proposed during the last years. Each of these techniques focuses on supporting the privacy preservation of a specialized KDD/DM task such as frequent item set mining, clustering etc. Privacy Preserving OLAP (PPOLAP) is a specific PPDM technique dealing with the privacy preservation of data cubes. | |
Handle: | http://hdl.handle.net/11368/2853918 | |
ISBN: | 9781466652026 | |
Appare nelle tipologie: | 2.1 Contributo in Volume (Capitolo,Saggio) |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.